Allen-Bradley

Bulletin 1336 FORCE
Adjustable Frequency
AC Drive
Series B, C, D

B300 – B600
C300 – C650
Because of the variety of uses for the products described in this publication, those responsible for the application and use of this control equipment must satisfy themselves that all necessary steps have been taken to assure that each application and use meets all performance and safety requirements, including any applicable laws, regulations, codes and standards.

The illustrations, charts, sample programs and layout examples shown in this guide are intended solely for purposes of example. Since there are many variables and requirements associated with any particular installation, Allen-Bradley does not assume responsibility or liability (to include intellectual property liability) for actual use based upon the examples shown in this publication.

Allen-Bradley publication SGI-1.1, Safety Guidelines for the Application, Installation, and Maintenance of Solid-State Control (available from your local Allen-Bradley office), describes some important differences between solid-state equipment and electromechanical devices that should be taken into consideration when applying products such as those described in this publication.

Reproduction of the contents of this copyrighted publication, in whole or in part, without written permission of Allen-Bradley Company, Inc., is prohibited.

Throughout this manual we use notes to make you aware of safety considerations:

ATTENTION: Identifies information about practices or circumstances that can lead to personal injury or death, property damage or economic loss.

Attention statements help you to:
- identify a hazard
- avoid the hazard
- recognize the consequences

Important: Identifies information that is critical for successful application and understanding of the product.
Summary of Changes

The information below summarizes the changes to the company-wide templates since the last release.

Updated Information

The derating tables in the Preface have been removed. Refer to the 1336 FORCE User Manual.
Table of Contents

Preface

Manual Objective ... P-1
Who Should Use This Manual P-1
Safety Precautions .. P-1
Electrostatic Discharge Precautions P-2
1336 FORCE Product Identification P-3
 Drive Nameplate Location P-3
 Software Compatibility P-4
Drive and Option Identification P-5
 1336 FORCE Drive Catalog Numbers P-5
 Drive Rating Qualifications P-7
Enclosure Type .. P-7
Conventions ... P-8
 Auxiliary Input ... P-8
 Auxiliary Interlock .. P-8
 Bit ... P-8
 Check .. P-8
 Connector .. P-8
 Default ... P-9
 Enable Input .. P-9
 False ... P-9
 Jumper ... P-9
 Control Interface Board P-9
 Parameter .. P-9
 Press ... P-9
 True ... P-10
Related Publications .. P-10

Control Logic Wiring and Adapters

Chapter 1

Chapter Objectives ... 1–1
Chapter Overview ... 1–1
Control Interface Option 1–3
 Control Interface L-Option Board Jumpers 1–3
 Available Inputs ... 1–4
Standard Adapter Local Programming 1–4
Adapters and Communication Ports 1–9
 Human Interface Module 1–9
 HIM Removal ... 1–12
 HIM Operation .. 1–12
Graphic Programming Terminal 1–13
 GPT Description 1–13
Drive Tools .. 1–14
Control Firmware Function 1–14
Table of Contents

Disassembly and Access Procedures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Chapter Objectives</td>
<td>2–1</td>
</tr>
<tr>
<td>2</td>
<td>Disassembly and Access Overview</td>
<td>2–1</td>
</tr>
<tr>
<td>2</td>
<td>Electrostatic Discharge Precautions</td>
<td>2–2</td>
</tr>
<tr>
<td>2</td>
<td>Tools</td>
<td>2–2</td>
</tr>
<tr>
<td>2</td>
<td>Fastener Torque Specifications</td>
<td>2–3</td>
</tr>
<tr>
<td>2</td>
<td>Torque Sequence</td>
<td>2–3</td>
</tr>
<tr>
<td>2</td>
<td>Torque Specifications</td>
<td>2–4</td>
</tr>
<tr>
<td>2</td>
<td>Disassembly and Access Procedures</td>
<td>2–6</td>
</tr>
<tr>
<td>2</td>
<td>Opening the Drive Enclosure</td>
<td>2–6</td>
</tr>
<tr>
<td>2</td>
<td>Opening</td>
<td>2–7</td>
</tr>
<tr>
<td>2</td>
<td>Closing the Drive Enclosure</td>
<td>2–8</td>
</tr>
<tr>
<td>2</td>
<td>Removing the Control Interface L-Option Board Mod –L4, –L5, or –L6</td>
<td>2–9</td>
</tr>
<tr>
<td>2</td>
<td>Removal</td>
<td>2–9</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>2–10</td>
</tr>
<tr>
<td>2</td>
<td>Removing the Main Control Board</td>
<td>2–11</td>
</tr>
<tr>
<td>2</td>
<td>Removal</td>
<td>2–11</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>2–13</td>
</tr>
<tr>
<td>2</td>
<td>Removing the Standard Adapter Board</td>
<td>2–13</td>
</tr>
<tr>
<td>2</td>
<td>Removal</td>
<td>2–14</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>2–14</td>
</tr>
<tr>
<td>2</td>
<td>Removing the PLC Comm Adapter Board</td>
<td>2–15</td>
</tr>
<tr>
<td>2</td>
<td>Removal</td>
<td>2–16</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>2–16</td>
</tr>
<tr>
<td>2</td>
<td>Removing the Control Board/Adapter Mounting Plate</td>
<td>2–17</td>
</tr>
<tr>
<td>2</td>
<td>Removal</td>
<td>2–18</td>
</tr>
<tr>
<td>2</td>
<td>Installation</td>
<td>2–19</td>
</tr>
<tr>
<td>2</td>
<td>Removing the Gate Driver Board</td>
<td>2–20</td>
</tr>
</tbody>
</table>

Component Test Procedures

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Chapter Objectives</td>
<td>3–1</td>
</tr>
<tr>
<td>3</td>
<td>Component Test Overview</td>
<td>3–1</td>
</tr>
<tr>
<td>3</td>
<td>Electrostatic Discharge Precautions</td>
<td>3–2</td>
</tr>
<tr>
<td>3</td>
<td>Tools</td>
<td>3–2</td>
</tr>
<tr>
<td>3</td>
<td>Test 1 Testing the Gate Driver Board</td>
<td>3–3</td>
</tr>
<tr>
<td>3</td>
<td>Test 2 Testing the Precharge Board</td>
<td>3–7</td>
</tr>
<tr>
<td>3</td>
<td>Test 3 Testing the Power Modules</td>
<td>3–9</td>
</tr>
<tr>
<td>3</td>
<td>Test 4 Testing the Bus Capacitors</td>
<td>3–12</td>
</tr>
<tr>
<td>3</td>
<td>Test 5 Testing the SCRs</td>
<td>3–15</td>
</tr>
</tbody>
</table>
Part Replacement Procedures

Chapter 4

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapter Objective</td>
<td>4-1</td>
</tr>
<tr>
<td>Part Replacement Overview</td>
<td>4-1</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>4-1</td>
</tr>
<tr>
<td>Electrostatic Discharge Precautions</td>
<td>4-2</td>
</tr>
<tr>
<td>Major Component Replacement</td>
<td>4-3</td>
</tr>
<tr>
<td>Detailed Product Identification</td>
<td>4-3</td>
</tr>
<tr>
<td>Bus Capacitor Bank</td>
<td>4-5</td>
</tr>
<tr>
<td>Removal</td>
<td>4-6</td>
</tr>
<tr>
<td>Installation</td>
<td>4-7</td>
</tr>
<tr>
<td>Thermistor</td>
<td>4-8</td>
</tr>
<tr>
<td>Removal</td>
<td>4-9</td>
</tr>
<tr>
<td>Installation</td>
<td>4-10</td>
</tr>
<tr>
<td>Power Modules</td>
<td>4-11</td>
</tr>
<tr>
<td>Removal</td>
<td>4-12</td>
</tr>
<tr>
<td>Installation</td>
<td>4-13</td>
</tr>
<tr>
<td>Power Module Snubber Resistor</td>
<td>4-14</td>
</tr>
<tr>
<td>Removal</td>
<td>4-15</td>
</tr>
<tr>
<td>Installation</td>
<td>4-16</td>
</tr>
<tr>
<td>SCRs</td>
<td>4-16</td>
</tr>
<tr>
<td>Removal</td>
<td>4-17</td>
</tr>
<tr>
<td>Installation</td>
<td>4-19</td>
</tr>
<tr>
<td>Fan and Transformer Assembly</td>
<td>4-20</td>
</tr>
<tr>
<td>Removal</td>
<td>4-21</td>
</tr>
<tr>
<td>Installation</td>
<td>4-22</td>
</tr>
<tr>
<td>DC Bus Inductor</td>
<td>4-23</td>
</tr>
<tr>
<td>Removal</td>
<td>4-24</td>
</tr>
<tr>
<td>Installation</td>
<td>4-25</td>
</tr>
<tr>
<td>Ground Sense CT</td>
<td>4-26</td>
</tr>
<tr>
<td>Removal</td>
<td>4-26</td>
</tr>
<tr>
<td>Installation</td>
<td>4-27</td>
</tr>
<tr>
<td>Bus Fuses</td>
<td>4-28</td>
</tr>
<tr>
<td>Removal</td>
<td>4-28</td>
</tr>
<tr>
<td>Installation</td>
<td>4-29</td>
</tr>
<tr>
<td>LEMs</td>
<td>4-30</td>
</tr>
<tr>
<td>Removal</td>
<td>4-30</td>
</tr>
<tr>
<td>Installation</td>
<td>4-31</td>
</tr>
<tr>
<td>MOV Surge Suppressor</td>
<td>4-32</td>
</tr>
<tr>
<td>Removal</td>
<td>4-32</td>
</tr>
<tr>
<td>Installation</td>
<td>4-34</td>
</tr>
</tbody>
</table>
Detailed Product Identification ... 4–3
Bus Capacitor Bank ... 4–5
Thermistor ... 4–8
Power Modules ... 4–11
Power Module Snubber Resistor 4–14
SCRs .. 4–16
Fan and Transformer Assembly 4–20
DC Bus Inductor .. 4–23
Ground Sense CT ... 4–26
Bus Fuses .. 4–28
LEMs ... 4–30
MOV Surge Suppressor 4–32

Chapter 5
Replacement Parts List
Chapter Objectives .. 5–1
Ordering Replacement Parts 5–1
Replacement Parts Listing ... 5–2

Schematics — 300 – 600 HP
1336 FORCE Drives

Chapter 6

Glossary

Index
Preface

Manual Objective

The information in this manual is designed to help repair an Allen-Bradley Bulletin 1336 FORCE Adjustable Frequency AC Drive with ratings B300 – B600, C300 – C600, and BX250.

Who Should Use This Manual

This manual is intended for qualified service personnel responsible for repairing the 1336 FORCE Adjustable Frequency AC Drive. You should:

- Read this entire manual before performing maintenance or repairs to drives.
- Have previous experience with, and basic understanding of, electrical terminology, procedures, required equipment, equipment protection procedures and methods, and safety precautions.

This manual describes equipment and disassembly procedures. You begin with general illustrations and end with greater detail concerning replacement parts and part locations on the drives. Later chapters may refer you back to earlier chapters for information on basic equipment and steps necessary to perform detailed diagnostics and part replacement.

Safety Precautions

ATTENTION: Some printed circuit boards and drive components may contain hazardous voltage levels. Remove and lock out power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Potentially fatal voltages may result from improper usage of oscilloscope and other test equipment. The oscilloscope chassis may be at a potentially fatal voltage if not properly grounded. If an oscilloscope is used to measure high voltage waveforms, use only a dual channel oscilloscope in the differential mode with X 100 probes. It is recommended that the oscilloscope be used in the A minus B Quasi-differential mode with the oscilloscope chassis correctly grounded to an earth ground.

ATTENTION: Only personnel familiar with the 1336 FORCE Adjustable Frequency AC Drive and associated machinery should plan or implement the installation, start-up and subsequent maintenance of the system. Failure to comply may result in personal injury and/or equipment damage.

Electrostatic Discharge Precautions

ATTENTION: This assembly contains parts and sub-assemblies that are sensitive to electrostatic discharge. Static control precautions are required when servicing this assembly. Component damage may result if you ignore electrostatic discharge control procedures. If you are not familiar with static control procedures, reference Allen-Bradley Publication 8000-4.5.2, Guarding Against Electrostatic Damage, or any other applicable ESD protection handbook.

Electrostatic discharge generated by static electricity can damage the complimentary metallic oxide semiconductor devices on various drive boards. It is recommended that you perform these procedures to guard against this type of damage when circuit boards are removed or installed:

- Wear a wrist-type grounding strap that is grounded to the drive chassis.
- Attach the wrist strap before removing the new circuit board from the conductive packet.
- Remove boards from the drive and immediately insert them into their conductive packets.
1336 FORCE
Product Identification

Drive Nameplate Location

The drive nameplate is located on the face of the Main Control Board mounting plate. The drive nameplate contains the drive’s catalog number and other important drive information. Reference the catalog number when ordering replacement parts.

Figure P.1
Drive Nameplate Location

Nameplate located on bottom of PC Board Mounting Frame
Software Compatibility

ATTENTION: To guard against machine damage and/or personal injury, drives with ratings above 45 kW (60 HP) must not be used with software versions below 1.07. Refer to the table below.

<table>
<thead>
<tr>
<th>Three-Phase Drive Rating</th>
<th>380 – 480V</th>
<th>500 – 600V</th>
<th>Compatible with Version</th>
<th>Frame Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>187 – 448 kW</td>
<td>224 – 448 kW</td>
<td>2.01 & Up</td>
<td>G</td>
<td></td>
</tr>
<tr>
<td>250 – 600 HP</td>
<td>300 – 600 HP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* kW and HP are constant torque (CT) ratings.
The following is an explanation of the catalog numbering system for 1336 FORCE Adjustable Frequency AC Drives and options. The catalog number is coded to identify the drive power rating and can be found on the drive shipping carton and nameplate.

1336 FORCE Drive Catalog Numbers

Table P.A

<table>
<thead>
<tr>
<th>BULLETIN NO.</th>
<th>DRIVE RATING</th>
<th>ENCLOSURE STYLE (Must be specified)</th>
<th>COMMON MODE CHOKES (Must be specified)</th>
<th>ADAPTER OPTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1336T</td>
<td>– B007</td>
<td>– AA</td>
<td>– CM</td>
<td>– GT2EN</td>
</tr>
</tbody>
</table>

380 – 480V AC Input, Constant Torque Drive

<table>
<thead>
<tr>
<th>Drive Rating[^1]</th>
<th>Enclosures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open IP00 No Enclosure</td>
<td>NEMA Type 1 IP20 General Purpose</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Frame Designation</th>
<th>Output Amps</th>
<th>Nominal HP (KW)</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>353.6</td>
<td>250 (187)</td>
<td>BX250-AN</td>
<td>BX250A-AA</td>
</tr>
<tr>
<td></td>
<td>406.4</td>
<td>300 (224)</td>
<td>B300-AN</td>
<td>B300A-AA</td>
</tr>
<tr>
<td></td>
<td>459.2</td>
<td>350 (261)</td>
<td>B350-AN</td>
<td>B350A-AA</td>
</tr>
<tr>
<td></td>
<td>505.1</td>
<td>400 (298)</td>
<td>B400-AN</td>
<td>B400A-AA</td>
</tr>
<tr>
<td></td>
<td>570.2</td>
<td>450 (336)</td>
<td>B450-AN</td>
<td>B450A-AA</td>
</tr>
<tr>
<td></td>
<td>599.2</td>
<td>500 (373)</td>
<td>B500-AN</td>
<td>B500A-AA</td>
</tr>
<tr>
<td></td>
<td>673.4</td>
<td>600 (448)</td>
<td>B600-AN</td>
<td>B600A-AA</td>
</tr>
</tbody>
</table>
Table P.B

<table>
<thead>
<tr>
<th>1336T</th>
<th>– C075</th>
<th>– AA</th>
<th>– CM</th>
<th>– GT2EN</th>
<th>– L6</th>
</tr>
</thead>
<tbody>
<tr>
<td>BULLETIN NO.</td>
<td>DRIVE RATING</td>
<td>ENCLOSURE STYLE</td>
<td>COMMON MODE CHOKES</td>
<td>ADAPTER CHOKES</td>
<td>OPTION</td>
</tr>
<tr>
<td>(Must be specified)</td>
<td>(Must be specified)</td>
<td></td>
<td></td>
<td>(Must be specified)</td>
<td></td>
</tr>
</tbody>
</table>

500 – 600V AC Input, Constant Torque Drive

Drive Rating

<table>
<thead>
<tr>
<th>Frame Designation</th>
<th>Output Amps</th>
<th>Nominal HP (KW)</th>
<th>Code</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>298.0</td>
<td>300 (224)</td>
<td>C300-AN</td>
<td>C300A-AA</td>
</tr>
<tr>
<td></td>
<td>353.6</td>
<td>350 (261)</td>
<td>C350-AN</td>
<td>C350A-AA</td>
</tr>
<tr>
<td></td>
<td>406.4</td>
<td>400 (298)</td>
<td>C400-AN</td>
<td>C400A-AA</td>
</tr>
<tr>
<td></td>
<td>459.2</td>
<td>450 (336)</td>
<td>C450-AN</td>
<td>C450A-AA</td>
</tr>
<tr>
<td></td>
<td>505.1</td>
<td>500 (373)</td>
<td>C500-AN</td>
<td>C500A-AA</td>
</tr>
<tr>
<td></td>
<td>599.2</td>
<td>600 (448)</td>
<td>C600-AN</td>
<td>C600A-AA</td>
</tr>
<tr>
<td></td>
<td>673.4</td>
<td>650 (485)</td>
<td>C650-AN</td>
<td>C650A-AA</td>
</tr>
</tbody>
</table>

Enclosures

- Open IP00
- NEMA Type 1 IP20

Refer to the Language Module and Options tables following these Catalog Number tables.

Drive rating is based on a carrier frequency of 2kHz maximum, an altitude of 1,000 meters or less, and a maximum ambient temperature of 40°C. Refer to Qualifications on page P-7.

Table P.C

Language Modules

<table>
<thead>
<tr>
<th>Description</th>
<th>Option Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>English/English</td>
<td>EN</td>
</tr>
<tr>
<td>English/French</td>
<td>FR</td>
</tr>
<tr>
<td>English/German</td>
<td>DE</td>
</tr>
<tr>
<td>English/Italian</td>
<td>IT</td>
</tr>
<tr>
<td>English/Japanese</td>
<td>JP</td>
</tr>
<tr>
<td>English/Spanish</td>
<td>ES</td>
</tr>
</tbody>
</table>
Table P.D

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAB</td>
<td>Blank – No Functionality</td>
</tr>
<tr>
<td>HAP</td>
<td>Programmer Only</td>
</tr>
<tr>
<td>HA1</td>
<td>Programmer, LCD/Analog Pot</td>
</tr>
<tr>
<td>HA2</td>
<td>Programmer, LCD/Digital Pot</td>
</tr>
<tr>
<td>HFB</td>
<td>Blank – No Functionality</td>
</tr>
<tr>
<td>HFP</td>
<td>Programmer Only</td>
</tr>
<tr>
<td>HF1</td>
<td>Programmer, LCD/Analog Pot</td>
</tr>
<tr>
<td>HF2</td>
<td>Programmer, LCD/Digital Pot</td>
</tr>
<tr>
<td>HJB</td>
<td>Blank – No Functionality</td>
</tr>
<tr>
<td>HJP</td>
<td>Programmer Only</td>
</tr>
<tr>
<td>HJ1</td>
<td>Programmer, LCD/Analog Pot</td>
</tr>
<tr>
<td>HJ2</td>
<td>Programmer, LCD/Digital Pot</td>
</tr>
</tbody>
</table>

Must be used in conjunction with a standard adapter option –GT2EN

For a more functionally complete description of each option refer to Publication 1336 FORCE-1.0.

Drive Rating Qualifications

Several factors can affect drive rating. If more than one factor exists, derating percentages must be multiplied. For example, if a 14-amp drive is installed at a 2km (6,600 ft.) altitude and has a 2% high-input line voltage, the actual amp rating is: $14 \times 94\%$ altitude derating $\times 96\%$ high-input line derating = 12.6 amps

Enclosure Type

The first character, A, indicates the Enclosure Code.

The second character indicates the type of enclosure shipped from the factory:

Table P.E

<table>
<thead>
<tr>
<th>Enclosure Type Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>NEMA Type 1 (IP 65)</td>
</tr>
</tbody>
</table>
Conventions

To help differentiate parameter names and display text from other text in this manual, the following conventions will be used:

- Parameter Names will appear in [brackets].
- Display Text will appear in “quotes”.

The following is a list of conventions used throughout this manual, and definitions of the conventions. For a list of terminology and definitions, refer to the Glossary in the back of this manual.

Auxiliary Input

The Auxiliary Input is a terminal connection on the Control Interface Board. This connection provides an external input for use as an Auxiliary Interlock. Unless this interlock is closed, the drive will be faulted with an Auxiliary Fault.

Auxiliary Interlock

The Auxiliary Interlock is a user supplied circuit consisting of reset, overload, or other interlocking circuitry. The Interlock is wired to the drive Auxiliary input.

Bit

A bit is a single character or status point used in programmable logic. Eight bits form a BYTE, 16 bits form a word. Drive parameters are actually eight bits or 16 bit words.

Check

To check means to examine either the physical condition of something or the setting of some control, such as a Parameter. Checking a drive board or component may also require measurements and tests.

Connector

A connector connects one drive board to another. Connectors come in two designs, male and female. Male connectors are stationary and contain pins, which are sometimes joined by jumpers. Female connectors are at the ends of wires or ribbon cables and plug into male connectors.
Default

When a drive function defaults, it automatically changes to a pre-programmed setting.

Enable Input

The Enable Input is a terminal connection on the Control Interface Board. This connection provides an external input to enable or disable the Drive Output section. It must be true to permit the drive to operate.

False

False refers to a logical false state. For instance, a Control Interface signal on TB3 is false when the input contact is open or the appropriate voltage is not applied to the Control Interface Board.

Jumper

A jumper completes a circuit between two pins within a male connector on a drive board. In the absence of certain optional equipment using female connectors, jumpers are applied to certain pins within a male connector to complete specific and necessary circuits.

Control Interface Board

A Control Interface Board plugs into connectors J7 and J9, located on the lower portion of the Standard Adapter Board. This board is identified as L4, L5, or L6 and provides optional control wiring configurations for a drive.

Parameter

Parameters are programmable drive functions that define various operating functions or status displays of a drive. Refer to Bulletin 1336 FORCE Adjustable Frequency AC Drive User Manual for Parameter details.

Press

Press a button on the Human Interface Module to change Parameter settings and drive functions.
True

True refers to a logical true state. For instance, a Control Interface signal on TB3 is true when: L4 contact input is closed, L5 input terminal registers 24V, or L6 input terminal registers 115V AC.

Related Publications

The following lists other Allen-Bradley publications that apply to the 1336 FORCE Adjustable Frequency AC Drives:

- Product Data Drive Tools Software (9303-2.0)
- Bulletin 1201 Graphic Programming Terminal User Manual (1201-5.0)
- Product Pricing Bulletin (1336 FORCE-3.0)
- 1336 FORCE Field Oriented Control User Manual (1336 FORCE-5.12)
- 1336 Force PLC Communications Adapter User Manual (1336 FORCE-5.13)
- Renewal Parts List (1336-6.5)
- Options Manuals/Instructions
Chapter Objectives

This chapter introduces you to terminal block locations and wiring, and adapter locations and functions.

Chapter Overview

This chapter illustrates and describes Standard Adapter Board:

- Control Logic Interface Options L4, L5, and L6, including Terminal Block TB3
- TB3 input mode selections and functions
- TB3, TB5, TB6, TB7 terminal designations

This chapter illustrates and describes the following terminal designations for the PLC Comm Adapter Board:

- TB20
- TB21

Important: All printed circuit boards, except the Main Control Board assembly, are referenced to negative ground (–bus).

ATTENTION: Some printed circuit boards and drive components may contain hazardous voltage levels. Remove power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: This assembly contains parts and sub-assemblies that are sensitive to electrostatic discharge. Static control precautions are required when servicing this assembly. Component damage may result if you ignore electrostatic discharge control procedures. If you are not familiar with static control procedures, reference Allen-Bradley Publication 8000–4.5.2, Guarding Against Electrostatic Discharge, or any other applicable ESD protection handbook.
ATTENTION: The National Electric Code (NEC) and local codes outline provisions for safely installing electrical equipment. Installation must comply with specifications regarding wire types, conductor sizes, branch circuit protection and disconnect devices. Failure to do so may result in personal injury and/or equipment damage.
Control Interface Option

The Control Interface L-Option Board provides a means of interfacing various signals and commands to the 1336 FORCE by using contact closures.

Three different versions of the option are available:

- **L4** Contact Closure Interface
- **L5** +24V AC/DC Interface
- **L6** 115V AC Interface

1 Uses internal +5V DC supply.

The user inputs are connected to the option board through TB3. The L4, L5 and L6 options each have nine control inputs. The function of each input must be selected through programming as explained later in this section.

Control Interface L-Option Board Jumpers

Important: If the Control Interface Board is being installed, Standard Adapter Board jumpers at pins 3 & 4 and 17 & 18 of J10 must be removed. If this board is removed, these jumpers must be reinstalled and the [Input Mode] parameter must be programmed to “1”.

Figure 1.2 Jumper Locations

Jumper J10 (Located on Standard Adapter Board)
Available Inputs

A variety of combinations made up of the following inputs are available.

<table>
<thead>
<tr>
<th>Input Mode</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Enable</td>
<td>Enable</td>
</tr>
<tr>
<td>Stop/Clear Fault</td>
<td>Auxiliary</td>
</tr>
<tr>
<td>Reverse</td>
<td>2 Stop Mode Selects</td>
</tr>
<tr>
<td>Digital Potentiometer (MOP)</td>
<td>Run Forward</td>
</tr>
<tr>
<td>2 Accel/Decel Rates</td>
<td>Run Reverse</td>
</tr>
<tr>
<td>3 Speed Selects</td>
<td>Local Control</td>
</tr>
</tbody>
</table>

The available combinations are shown in Figure 1.4. Programming the [Input Mode] parameter to one of the Input Mode numbers listed selects that combination of input functions.

Important: The [Input Mode] parameter can be changed at any time; however, programming changes will not take effect until power has been cycled to the drive. When changing an input mode, it is important to note that the corresponding inputs to TB3 may also change.

The programming options of the Control Interface Option allow you to select an input combination to meet the needs of a specific installation. Appropriate selection of a combination may be done by using Table 1.A. First determine the type of start/stop/direction control desired. Then select the remaining control functions available. After selecting a group of Input Modes use Table 1.A for specific mode selection. Record the selected mode number below.

Selected Mode Number: __________________________

Standard Adapter

Local Programming

For local programming and control information, refer to the 1336 FORCE User Manual.
Table 1.A
Input Mode Selection

<table>
<thead>
<tr>
<th>Start/Stop Type</th>
<th>Direction Control</th>
<th>Communication Compatibility</th>
<th>Mode(s) to Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop & Enable Only</td>
<td>None</td>
<td>Control must be provided by HIM or Communication Option.</td>
<td>1</td>
</tr>
<tr>
<td>Momentary Pushbutton (3 Wire)</td>
<td>Maintained Switch (Open-Forward, Closed-Reverse)</td>
<td>Start/Stop – works in parallel with HIM and Communication Options. Direction Control will not work in parallel with HIM or Communication Options. User must select direction control from either HIM and Communication Options or TB3 input.</td>
<td>2 – 6</td>
</tr>
<tr>
<td>Momentary Pushbutton (3 Wire)</td>
<td>Momentary Pushbuttons (Forward and Reverse)</td>
<td>Start/Stop – works in parallel with HIM and Communication Options. Direction – works in parallel with HIM or Communication Options.</td>
<td>7 – 11</td>
</tr>
<tr>
<td>Maintained switches for combined run and direction control (2 wire, Run Forward, Run Reverse)</td>
<td>Start/Stop – not compatible with HIM or Communication Options. Direction – not compatible with HIM or Communication Options.</td>
<td>12 – 16</td>
<td></td>
</tr>
</tbody>
</table>

The maximum and minimum wire sizes accepted by TB3 is 2.1 and 0.30 mm² (14 and 22 AWG). Maximum torque for all terminals is 0.9 – 1.13 N-m (8 – 10 in.-lb).
Figure 1.4
Input Mode Selection and Typical TB3 Connections

[Input Mode] 1
Factory Default

Note: If this mode is selected, the status of all inputs can be read at the [Input Status] parameter. However, only “Stop/Fault Reset” and “Enable” will have control function.

[Input Mode] 2 – 6
Three-Wire Control with Single-Source Reversing

ATTENTION: The JOG function will not operate properly unless a SCANport option is connected to the drive. To assure proper JOG function, install at least one of the following:

- 1201-HA2, 1336-GM1
- 1201-HA1, 1336-GM1

If this mode is selected, the status of all inputs can be read at the [Input Status] parameter. However, only “Stop/Fault Reset” and “Enable” will have control function.

Note: If this mode is selected, the status of all inputs can be read at the [Input Status] parameter. However, only “Stop/Fault Reset” and “Enable” will have control function.

1 See Table 1.B.
2 Drive must be stopped to take Local Control. Control by all other adapters is disabled (except Stop).
3 These inputs must be present before drive will start.
Three-Wire Control with Multi-Source Reversing

User Connections

<table>
<thead>
<tr>
<th>Start</th>
<th>Stop/Fault Reset³</th>
<th>Mode</th>
<th>Common</th>
<th>Reverse</th>
<th>Reverse</th>
<th>Digital Pot Up</th>
<th>Reverse</th>
<th>1st Accel</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>20</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Jog Speed Select 3¹
- Speed Select 3¹
- Speed Select 2¹
- Speed Select 1¹

Two-Wire Control, Single-Source Control

User Connections

<table>
<thead>
<tr>
<th>Run Forward</th>
<th>Stop/Fault Reset³</th>
<th>Mode</th>
<th>Common</th>
<th>Local Control²</th>
<th>Stop Type</th>
<th>2nd Accel</th>
<th>Digital Pot Up</th>
<th>Local Control²</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td>20</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td></td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td></td>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td></td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Speed Select 3¹
- Speed Select 2¹
- Speed Select 1¹

1. See Table 1.B.
2. Drive must be stopped to take Local Control.
 Control by all other adapters is disabled (except Stop).
3. These inputs must be present before drive will start.

ATTENTION: The JOG function will not operate properly unless a SCANport option is connected to the drive. To ensure proper JOG function, install at least one of the following: 1201-HAP, 1201-HA1, 1201-HA2, 1336-GM1, 1305 plus Language Module 1336S-EN firmware FRN 1.05 or earlier.
Table 1.B
Speed Select Input State vs. Velocity Reference Source

<table>
<thead>
<tr>
<th>Para 52</th>
<th>Speed Select 3</th>
<th>Speed Select 2</th>
<th>Speed Select 1</th>
<th>Velocity Reference Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB3</td>
<td>Bit 14 Terminal 26</td>
<td>Bit 13 Terminal 27</td>
<td>B12 Terminal 28</td>
<td>Last State</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>O</td>
<td>O</td>
<td>External Reference 1</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>X</td>
<td>O</td>
<td>Preset Speed 1</td>
</tr>
<tr>
<td></td>
<td>O</td>
<td>X</td>
<td>X</td>
<td>Preset Speed 2</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>O</td>
<td>O</td>
<td>Preset Speed 3</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>O</td>
<td>X</td>
<td>Preset Speed 4</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>O</td>
<td>Preset Speed 5</td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>External Reference 2</td>
</tr>
</tbody>
</table>

O = Open — Input Removed
X = Closed — Input Present

The DIP switches and jumpers on the PLC Communications Board have been preset at the factory. Communication is received through Channels A and B. This communication protocol is defined through SW U2 – U5. If switches or jumpers require reconfiguration, refer to the 1336 FORC...
Table 1.C

PLC Comm Adapter Reference Signal Connections

<table>
<thead>
<tr>
<th>Terminal Block</th>
<th>Terminal Number(s)</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB20</td>
<td>1</td>
<td>Drive Enable (NO)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Motor Thermoguard (NC)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Normal Stop (NC)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>External Fault (NC)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Input Common</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Fault Output (NC)</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Fault Output (COM)</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>Fault Output (NO)</td>
</tr>
<tr>
<td>TB21</td>
<td>1</td>
<td>OUT 1</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>COM 1</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>COM 2</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>OUT 2</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>OUT 3</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>COM 3</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>OUT 4</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>COM 4</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>IN 1+</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>IN 1–</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>IN 2+</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>IN 2–</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>IN 3+</td>
</tr>
<tr>
<td></td>
<td>14</td>
<td>IN 3–</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>IN 4+</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>IN 4–</td>
</tr>
<tr>
<td></td>
<td>17</td>
<td>+10V</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>COM</td>
</tr>
<tr>
<td></td>
<td>19</td>
<td>–10V</td>
</tr>
</tbody>
</table>

Adapters and Communication Ports

Human Interface Module

When the drive-mounted HIM is supplied, it will be connected as Port 1 (refer to Figure 1.7). The HIM can be divided into two sections; Display Panel and Control Panel. The Display Panel provides a means of programming the drive and viewing the various operating parameters. The Control Panel allows different drive functions to be controlled. For HIM operation, refer to the 1336 FORCE Field Oriented Control User Manual.

Important: The operation of HIM functions depends upon drive parameter settings. Default parameter values allow full HIM functionality.
Figure 1.6
Human Interface Module, Standard Adapter Only

Figure 1.7
Standard Adapter Board Port Locations
Figure 1.8
PLC Comm Adapter Board Port Locations

Main Control Board

Communications Channels Ports 6, 7

PLC Comm Board

SCAN port 1

SCAN port 2

TB20

TB21
HIM Removal

ATTENTION: Some voltages present behind the drive front cover are at incoming line potential. To avoid an electric shock hazard, use extreme caution when removing/replacing the HIM.

For handheld operation, the module can be removed and located up to 10 meters (33 feet) from the drive.

Important: Power must be removed from the drive or Bit 1 of the [Logic Mask] parameter must be set to “0” to allow removal of the HIM module without causing a Communication Fault. Setting Bit 1 of the [Logic Mask] parameter to “0” allows HIM removal while power is applied to the drive. Note that this also disables all HIM control functions except Stop.

Important: To remove the module:

1. Ensure that power has been removed or [Logic Mask] has been set to “0”.
2. Take the drive front cover off and simply slide the module down and out of its cradle. Remove cable from module.
3. Connect the appropriate cable between the HIM and the Communications Port (Adapter 2, 3, 4, or 5).
4. Reverse the above steps to replace the module. Apply power or reset Bit 1 of the [Logic Mask] parameter to “1” to enable HIM control.

HIM Operation

When power is first applied to the drive, the HIM will cycle through a series of displays. These displays will show drive ID and communication status. Upon completion, the Status Display (refer to Figure 1.9) will be shown. This display shows the current status of the drive (i.e. Stopped, Running, etc.) or any faults that may be present (Not Enabled, etc.). Refer to the 1336 FORCE Field Oriented Control User Manual.

![Figure 1.9 Status Display](Stopped +0.00 Hz)
Graphic Programming Terminal

GPT Description

The optional GPT (Figure 1.10) is a remote device with a 1.8 meter (6 foot) long cable. The GPT offers a 40-by-8 character display that can also be used as a graphics display to show trending graphs. For GPT operation, refer to the 1336 FORCE Field Oriented Control User Manual. See also the 1201 GPT User Manual.

Important: Main Menu screens are dynamic and will change based on functionality provided by adapter and drive status.

Figure 1.10
Graphic Programming Terminal
Drive Tools

Drive Tools software is a Windows 3.1 compatible family of application programs allowing the user to perform programming, monitoring, and diagnostic operations on Allen-Bradley AC and DC digital drive products. The software consists of five Windows applications. For operation, refer to the Product Data Drive Tools Software manual.

Control Firmware Function

All control functions in the 1336 FORCE are performed through the use of parameters that can be changed with a programming terminal or Drive Tools. Refer to an overview Block Diagram of the Control Firmware Function in the 1336 FORCE Field Oriented Control User Manual.

Feedback information is derived from hardware devices as part of the process equipment used. Analog signals are converted to digital signals for use by the drive. Control signals may be provided to the drive by one of two Adapter Boards.

All setup and operation information used by the drive is stored in a system parameter table. Every parameter, including Setup and Configuration parameters (Sources and Sinks), has an entry in the parameter table. For example, parameter 101 is named the “Velocity Reference 1 HI (whole)” parameter and contains a number value representing the velocity reference. The velocity reference can originate from an external control device such as a potentiometer connected to the analog input of an Adapter board or a signal coming in via RIO from a PLC. Refer to the 1336 FORCE User Manual, Publication 1336 FORCE-5.12.
Chapter 2

Disassembly and Access Procedures

This chapter describes general disassembly procedures required to access internal drive components.

Chapter Objectives

Disassembly and Access Overview

ATTENTION: Some printed circuit boards and drive components may contain hazardous voltage levels. Remove and lock out power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Servicing energized industrial control equipment can be hazardous. Electrical shock, burns, or unintentional actuation of controlled industrial equipment may cause death or serious injury. Follow the safety-related practices of NFPA 70E, Electrical Safety for Employee Workplaces, when working on or near energized equipment. Do not work alone on energized equipment.

Publication 1336 FORCE-6.15 – August, 1999
Electrostatic Discharge Precautions

ATTENTION: This assembly contains parts and sub-assemblies that are sensitive to electrostatic discharge. Static control precautions are required when servicing this assembly. Component damage may result if you ignore electrostatic discharge control procedures. If you are not familiar with static control procedures, reference Allen-Bradley Publication 8000–4.5.2, Guarding Against Electrostatic Discharge, or any other applicable ESD protection handbook.

Electrostatic discharge generated by static electricity can damage the complimentary metallic oxide semiconductor devices on various drive boards. It is recommended that you perform these procedures to guard against this type of damage when circuit boards are removed or installed:

- Wear a wrist-type grounding strap that is grounded to the chassis.
- Attach the wrist strap before removing the new circuit board from the conductive packet.
- Remove boards from the drive and immediately insert them into their conductive packets.

Tools

You need the following tools to disassemble and assemble the drive:

- Pliers
- Phillips screwdrivers (small, medium, and large)
- Standard screwdrivers (small, medium, and large)
- Metric socket set up to 19 mm
- Torque wrench to 34 N-m or 280 in.-lbs
- Torque screwdriver to 10 N-m or 80 in.-lbs
- Nylon tie wraps
Fastener Torque Specifications

Torque Sequence

When mounting components to a drive’s heat sink, component-fastener torque sequences and tolerances are crucial to component-to-heat sink heat dissipation.

ATTENTION: Component can be damaged if temporary tightening procedure is not performed to specification.

The following illustrates temporary and final tightening sequences for components fastened to a heat sink using two, four, and six screws. Temporary torque is 1/3 (33%) of final torque, except six-point mountings, which require 0.5 N-m (4 in.-lb). The numeric illustration labels are for your assistance. Drive components do not carry these labels.

Figure 2.1
Two-Point Mounting

Two-Point Mounting

Temporary Tighten

Final Tighten
Disassembly and Access Procedures

Figure 2.2
Four-Point Mounting

Do not exceed 0.4 Newton-meters (3 in.-lb) on initial torque or 3.8 Newton-meters (32 in.-lb) final torque of all six screws.

Figure 2.3
Six-Point Mounting

Torque Specifications

The following table lists fastener locations by component, how the fasteners are used, and torque specifications. Refer to Torque Sequence in this chapter for fastening two-point, four-point and six-point components to the heat sink.
Disassembly and Access Procedures

Table 2.A
Fastener Torque Specifications

<table>
<thead>
<tr>
<th>Component</th>
<th>Fastener Application</th>
<th>Torque in-lb</th>
<th>Torque N-m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Motor</td>
<td>Motor to Fan Cover Assembly</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Fan Transformer</td>
<td>Transformer to chassis</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Fan Capacitor</td>
<td>Capacitor to chassis</td>
<td></td>
<td>Hand-tighten</td>
</tr>
<tr>
<td>MOV Surge Suppressor</td>
<td>MOV to chassis</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Snubber Resistor</td>
<td>Resistor to heat sink</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Snubber Bracket</td>
<td>Bracket to Power Module Laminated Bus</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>Snubber Board</td>
<td>Board to Brackets</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Snubber Board</td>
<td>Board to Input Rectifier Bracket</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Volt Sharing Resistor</td>
<td>Resistor to heat sink</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Volt Sharing Resistor</td>
<td>Wires to Capacitor Bus Bar Assembly</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Thermistor</td>
<td>Thermistor to heat sink</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Bus Capacitor Holder</td>
<td>Holder to Bus Capacitors</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Capacitor Bus Bar Assembly</td>
<td>Assembly to Bus Capacitors</td>
<td>50</td>
<td>6</td>
</tr>
<tr>
<td>Power Module Gate Interface Board</td>
<td>Board to Power Modules</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Power Module Bus Bar</td>
<td>Bus Bar to Power Modules</td>
<td>90</td>
<td>11</td>
</tr>
<tr>
<td>Power Module</td>
<td>Module to heat sink</td>
<td>Refer to Figure 2.3</td>
<td></td>
</tr>
<tr>
<td>Input Rectifier (SCR)</td>
<td>Rectifier to heat sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transitional Bus Bar Assembly</td>
<td>Assembly to Power Module Bus Bar Assembly</td>
<td>80</td>
<td>9</td>
</tr>
<tr>
<td>Bus Fuse F1 – F3</td>
<td>Fuse to Transitional Bus Bar Assembly</td>
<td>240</td>
<td>28</td>
</tr>
<tr>
<td>DC Bus Inductor L1</td>
<td>Inductor to chassis</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Bus Bar Cable Adaptor</td>
<td>Adaptor to Transitional Bus Bar Assembly and DC Bus Inductor, right side of Motor Flex Bus</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Converter Bus and Motor Bus Bars</td>
<td>All connections</td>
<td>240</td>
<td>28</td>
</tr>
<tr>
<td>Wires (PE)</td>
<td>Wires to Ground Stud</td>
<td>175</td>
<td>21</td>
</tr>
<tr>
<td>Wire (TE)</td>
<td>Wire on Main Control Board Mounting Plate</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Wires</td>
<td>Wires to TB1</td>
<td>16</td>
<td>1.8</td>
</tr>
<tr>
<td>Wires</td>
<td>Wires to TB2</td>
<td>7</td>
<td>0.8</td>
</tr>
<tr>
<td>Wires</td>
<td>Wires to TB3</td>
<td>8 – 10</td>
<td>0.9 – 1.1</td>
</tr>
<tr>
<td>Power Cables</td>
<td>Cables to terminals</td>
<td>240</td>
<td>28</td>
</tr>
<tr>
<td>Main Control, Gate Driver, Precharge Board Mounting Plates</td>
<td>Plates to chassis</td>
<td>26</td>
<td>3</td>
</tr>
<tr>
<td>Heat Sink Guard</td>
<td>Guard to chassis</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>T-Bar Mounting Bolt</td>
<td>T-Bar to Main Frame</td>
<td>240</td>
<td>28.8</td>
</tr>
<tr>
<td>Capacitor Mounting Bolt</td>
<td>Capacitor Bank Assembly to Main Frame</td>
<td>240</td>
<td>28.8</td>
</tr>
<tr>
<td>Inverter Housing Assembly Lock-Down Bolt</td>
<td>Inverter Housing Assembly to Main Frame</td>
<td>240</td>
<td>28.8</td>
</tr>
<tr>
<td>Wheel Chock Fasteners</td>
<td>Wheel Chocks to tracks</td>
<td>75</td>
<td>9</td>
</tr>
<tr>
<td>Ground Cable Bolts</td>
<td>Ground Cables from both assemblies to Main Frame</td>
<td>75</td>
<td>9</td>
</tr>
</tbody>
</table>

[1] Refer to the gauge on the clamp, which indicates pounds of force. The reading should be 400 lbs.
Disassembly and Access Procedures

Opening the Drive Enclosure

Figure 2.4
Drive Enclosure
Disassembly and Access Procedures

Opening

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

1. Remove power from the drive.
2. Turn the enclosure door latches 90 degrees counterclockwise to open the enclosure door.
3. Turn the latches, located on the left side of the PC Board Mounting frame, to open the PC Board Mounting Frame. Refer to Figure 2.4.
4. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
ATTENTION: A blown fuse can create a hazard of shock which may result in death or serious injury. Check voltage between the bus bar and both ends of all three fuses.

5. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

6. Remove the customer-supplied wiring from the drive.

Closing the Drive Enclosure

Close the Drive Enclosure in reverse order of opening.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the Control Interface L-Option Board Mod –L4, –L5, or –L6

Figure 2.6
Control Interface L-Option Board

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at TB5, TB6, and TB7 on the Standard Adapter Board.
5. Remove all wires from Control Interface Board TB3.
6. Loosen the two captive screws fastening the Control Interface Board to the Standard Adapter Board.
7. Grip the right and left sides of the Control Interface Board and pull the board straight out from the Standard Adapter Board.

Installation

Install the Control Interface Board in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the Main Control Board

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 • TB20 and TB21 on drives using a PLC Comm Adapter Board
 • TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Disconnect the following from the Main Control Board:
 • J1 connector
 • J5 ribbon cable connector
 • Stake-on ground wire connector
 • All wires from the terminals on TB10
6. Remove the screws fastening the Main Control Board to the Control Board/Adapter Mounting Plate.
7. Slide the Main Control Board upward to release it from the slide-mount stand-offs and connector J7.
8. Store the Main Control Board in an anti-static bag.
Installation

Install the Main Control Board in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

Removing the Standard Adapter Board

Figure 2.8
Standard Adapter Board
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between +DC and –DC on Terminal Block TB1. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

1. Remove power from the Drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts at between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at TB5, TB6, and TB7 on the Standard Adapter Board.
5. Disconnect the following from the Standard Adapter Board:
 - Stake-on ground wire connector
 - All wires from TB5
 - All wires from TB6
 - All wires from TB7
6. Remove the Control Interface Board. Refer to Removing the Control Interface L-Option Board in this chapter.
7. Remove the two screws fastening the Standard Adapter Board to the mounting plate.
8. Pull the Standard Adapter Board up to release it from the slide mount stand-offs and connector J1.

Installation

Install the Standard Adapter Board in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the PLC Comm Adapter Board

Figure 2.9
PLC Comm Adapter Board
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury.

Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

1. Remove Power from the drive.
2. Turn the enclosure door latches 1/4 turn counterclockwise to open the enclosure door.
3. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
4. Check for zero volts at between +DC and –DC. Refer to Figure 2.5.
5. Check for the absence of control voltage at TB20 and TB21 on the PLC Comm Adapter Board.
6. Disconnect the following from the PLC Comm Adapter Board:
 - Stake-on ground wire connector
 - All wires from TB20 and TB21
 - J5 connector
 - J7 connector
 - Communication channel A and B connectors
7. Remove the screws fastening the PLC Comm Adapter Board to the mounting plate.
8. Pull the PLC Comm Adapter Board down to release it from the slide-mount stand-offs and connector J1.

Installation
Install the PLC Comm Adapter Board in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the Control Board/Adapter Mounting Plate

Figure 2.10
Control Board Adapter Mounting Plate
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Remove the Standard or PLC Comm Adapter Board.

The Drive may have either a Standard Adapter Board or a PLC Comm Adapter Board. Refer to Removing the Standard Adapter Board or to Removing the PLC Comm Adapter Board in this chapter.

6. Remove the wires and connectors from the Main Control Board. Refer to Removing the Main Control Board in this chapter.
7. Remove the two screws fastening the bottom of the Control Board Adapter Mounting Plate to the PC Board Mounting Frame.
8. Remove the nuts fastening the top of the Main Control Board Mounting Plate to the PC Board Mounting Frame.

9. Lift the Main Control Board Mounting Plate out of the drive.

Installation

Install the Main Control Board Mounting Plate in reverse order of removal. Refer to Table 2.A – Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the Gate Driver Board

Figure 2.11
Gate Driver Board
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Remove the Control Board/Adapter Mounting Plate. Refer to Removing the Control Board/Adapter Mounting Plate in this chapter.
6. Disconnect the following from the Gate Driver Board:
 - J2 connector
 - J6 connector
 - J7 connector
 - J8 connector
 - J9 connector
 - J10 connector
 - J13 connector
7. Turn the eight stand-offs, fastening the Gate Driver Board to the PC Board Mounting Frame, 1/4 turn counterclockwise.

8. Pull the Gate Driver Board away from the stand-offs.

9. Store the Gate Driver Board in an anti-static bag.

Installation

Install the Gate Driver Board in reverse order of removal. Refer to Table 2.A – Fastener Torque Specifications.

ATTENTION: When installing the wire harness connecting Gate Driver Board connector J9 to Precharge Board connector J3, align the wires on the harness terminals with the pins on the board connectors. Incorrect harness connection may result in faulty drive operation and may damage the equipment.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the Precharge Board

Figure 2.12 Precharge Board

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 • TB20 and TB21 on drives using a PLC Comm Adapter Board
 • TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Turn the four stand-offs 1/4 turn counterclockwise to remove the Precharge Board High Voltage Guard.
6. Disconnect the following from the Precharge Board:
 • J1 connector
 • J2 connector
 • J3 connector
 • J4 connector
7. Turn the six stand-offs, fastening the Precharge Board to the PC Board Mounting Frame, 1/4 turn counterclockwise to remove the board.
8. Store the Precharge Board in an anti-static bag.
Installation

Install the Precharge Board in reverse order of removal.

ATTENTION: When installing the wire harness connecting Gate Driver Board connector J9 to Precharge Board connector J3, align the wires on the harness terminals with the pins on the board connectors. Incorrect harness connection may result in faulty drive operation and may damage the equipment.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

Access to the Inverter Housing and Capacitor Bank Assemblies

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.
ATTENTION: These assemblies weigh about 500 pounds each. Before you pull either one from the drive, you must have a platform in place to hold the assembly. You cannot remove the assembly without a platform. The top of the platform must be even with the assembly’s track. The platform must be strong enough to support the assembly and the personnel servicing the drive. The marketing department at Allen-Bradley can provide plans for a suitable platform. Refer to the back cover of this manual for the address and telephone number.

ATTENTION: To remove either the Inverter Housing Assembly or the Capacitor Bank Assembly safely requires two persons. Attempting to remove either assembly by yourself may result in death or serious injury.

ATTENTION: Do not remove both the Inverter Housing and the Capacitor Bank assemblies at the same time.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

The three main parts of this drive are the PC Board Mounting Frame, the Inverter Housing Assembly, and the Capacitor Bank Assembly. Some procedures in this manual require access to these assemblies and refer to this section.

Each assembly has wheels that roll in tracks built into the base of the drive. Chocks bolted into the tracks prevent assembly movement. The drive itself also has wheels, built into the main framework of the drive. Because of the size, weight, and physical characteristics of the drive, any service procedures requiring removal of either the Inverter Housing Assembly or the Capacitor Bank Assembly requires two people.
Access to the Inverter Housing Assembly

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.
Removal

ATTENTION: To remove either the Inverter Housing Assembly or the Capacitor Bank Assembly safely requires two persons. Attempting to remove either assembly by yourself may result in death or serious injury.

ATTENTION: Do not remove both the Inverter Housing and the Capacitor Bank assemblies at the same time.
Access the drive:

1. Remove power from the drive.

2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.

3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.

4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

5. Disconnect the AC input lines at the top left of the drive.

6. Disconnect the wires to the door-mounted external fans at the fan terminal block located on the Inverter Housing Assembly.

Remove the T-Bar from the front of the drive:

1. Release the locking nut between the inverter housing and the left side of the T-bar.

2. Remove the T-bar mounting bolt at the bottom of the upright.

3. Remove the bolts fastening each end of the crossbar.

4. Release the snapper pin at the top of the upright.
Remove the connections between assemblies:

1. Remove the four connections to the DC Bus Inductor.
 - Two connections to the left of the vertical Glastic® insulator at the left of the motor leads.
 - Two connections to the left of the U-phase 350 amp bus fuse (capacitor fuse).

2. Remove the six nuts fastening the left end of the flex motor buses to the three Power Module Bus Bars.

3. Remove the 12 nuts fastening the left side of the capacitor flex bus connections to the spine.

4. Pull all the flexible leads to the right, out of the way.
5. Remove the spine.
 - Push the spine carefully to the right.
 - Lift it out of the drive without forcing it.

6. Remove the six Gate Driver connectors from the Power Module Gate Interface Boards. Pinch the sides of the connector body while pulling back.

7. Disconnect any remaining wiring between the Inverter Housing Assembly and the Capacitor Bank Assembly.

8. Disconnect the Inverter Housing Assembly ground cable from the ground plate at the bottom of the main assembly.

9. Remove the wheel chocks at the bottom of the Inverter Housing Assembly.

10. Pull the assembly onto a platform. Refer to Figure 2.16 for recommendations. Use the handle attached to the Fan 2 housing.
ATTENTION: Hazard of tipping and severe injury exists. This process requires two people. The platform must be able to support 909 kg (2,000 lbs).

Figure 2.16 Service Platform
Installation

Install the Inverter Housing Assembly in reverse order of removal.

Important: When pushing the Inverter Housing Assembly into the drive, you may need to have someone tip the unit slightly to the left or right to center it between the guides at the back of the Enclosure. Adjust the angle brackets at the ends of the T-bar crossbar.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing the PC Board Mounting Frame

The PC Board Mounting Frame must be removed to pull the Capacitor Bank Assembly from the drive.

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Removal

1. Remove power from the drive.

2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.

3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.

4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

5. Disconnect any wires connecting the PC Board Mounting Frame with either main assembly.

6. Open the PC Board Mounting Frame all the way to the right.

7. Lift the frame straight up to remove it from the hinges.

Installation

Install the PC Board Mounting Frame in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Access to the Capacitor Bank Assembly

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Removal

ATTENTION: To remove either the Inverter Housing Assembly or the Capacitor Bank Assembly safely requires two persons. Attempting to remove either assembly by yourself may result in death or serious injury.

ATTENTION: Do not remove both the Inverter Housing and the Capacitor Bank assemblies at the same time.

Access the drive:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Remove the motor cable connections from the terminal strips at the bottom right of the drive.
6. Remove the PC Board Mounting Frame. Refer to Removing the PC Board Mounting Frame in this chapter.

Remove the T-Bar:

Important: Refer to Figure 2.13.

1. Release the locking nut between the inverter housing and the left side of the T-bar.
2. Remove the T-bar mounting bolt at the bottom of the upright.
3. Remove the bolts fastening each end of the crossbar.
4. Release the snapper pin at the top of the upright.

Remove the connections between assemblies:

Important: Refer to Figure 2.14.

1. Remove the four connections to the DC Bus Inductor.
 - Two connections to the left of the vertical Glastic® insulator at the left of the motor leads.
 - Two connections to the left of the U-phase 350 amp bus fuse (capacitor fuse).

2. Remove the six nuts fastening the left end of the motor flex buses to the three Power Module Bus Bars.

3. Remove the 12 nuts fastening the left side of the capacitor flex bus connections to the spine.

4. Pull all the flexible leads to the right, out of the way.

5. Remove the spine.
 - Push the spine carefully to the right.
 - Lift it out of the drive without forcing it.

Access the Capacitor Bank Assembly:

1. Disconnect the Inverter Housing Assembly ground cable from the ground plate at the bottom of the main frame.

2. Disconnect the Capacitor Bank Assembly ground cable.

3. Disconnect any ground wires that obstruct removal of the assembly.

4. Remove the capacitor mounting bolt at the top center of the capacitor frame.

5. Remove the wheel chocks at the bottom of the Capacitor Bank Assembly.

6. Pull the assembly onto a platform. Refer to Figure 2.16.

ATTENTION: Hazard of tipping and severe injury exists. This process requires two people. The platform must be able to support 909 kg (2,000 lbs).

Installation

Install the Capacitor Bank Assembly in reverse order of removal.

Important: Guide the unit into place so that it mates with the lock-down bolt at the top of the capacitor frame. Adjust the angle brackets at the ends of the T-bar crossbar.
ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

Removing a Power Module Snubber Board

The Power Module Snubber Boards are located on the Inverter Heat Sink assembly.

Figure 2.19
Power Module Snubber Board
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between pins 1 and 2 of connector J1 to discharge any voltage.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.
6. Remove the snubber resistor J1 and J2 connections from the snubber board.

7. Remove the screws fastening the Power Module Snubber Board to the snubber bus bars.

Installation

ATTENTION: Do not substitute longer or shorter hardware when fastening the Power Module components to the Power Modules. Use the same size fastener to fasten the components as was originally used. Using different fastener lengths will damage the Power Modules.

Install the Power Module Snubber Board in reverse order of removal. Refer to Table 2.A – Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Removing an Input Rectifier Snubber Board

The Input Rectifier Snubber Boards are located on the Inverter Housing Assembly, under the Guard, between the heat sinks and the vertical bus.

Figure 2.20
Input Rectifier Snubber Board
Disassembly and Access Procedures

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in this chapter.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.
6. Remove the plastic guard by removing the screws fastening the left side of the guard to the SCR-heat sink assembly.
7. Remove the screws fastening the Input Rectifier Snubber Board to the AC and DC snubber buses.
Installation

Install the Input Rectifier Snubber Board in reverse order of removal. Refer to Table 2.A – Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Chapter 3

Component Test Procedures

Chapter Objectives

The following tests help you troubleshoot B300 – B600, C300 – C600, and BX250 drives.

Component Test Overview

In some cases, different tests troubleshoot components of the same name.

These similar tests vary according to the rating of the drive being tested. Verify that the rating on the drive matches the rating for the test you are performing.

The part replacement procedures in this chapter assume that the drive you are servicing either has no enclosure or that the enclosure is open. For more information on opening the Drive Enclosure, refer to Chapter 2 – Disassembly and Access Procedures, Opening the Drive Enclosure.

ATTENTION: Some printed circuit boards and drive components may contain hazardous voltage levels. Remove and lock out power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Servicing energized industrial control equipment can be hazardous. Electrical shock, burns, or unintentional actuation of controlled industrial equipment may cause death or serious injury. Follow the safety-related practices of NFPA 70E, Electrical Safety for Employee Workplaces, when working on or near energized equipment. Do not work alone on energized equipment.
Electrostatic Discharge Precautions

ATTENTION: This assembly contains parts and sub-assemblies that are sensitive to electrostatic discharge. Static control precautions are required when servicing this assembly. Component damage may result if you ignore electrostatic discharge control procedures. If you are not familiar with static control procedures, reference Allen-Bradley Publication 8000-4.5.2, Guarding Against Electrostatic Discharge, or any other applicable ESD protection handbook.

Electrostatic discharge generated by static electricity can damage the complimentary metallic oxide semiconductor devices on various drive boards. It is recommended that you perform these procedures to guard against this type of damage when circuit boards are removed or installed:

- Wear a wrist-type grounding strap that is grounded to the chassis.
- Attach the wrist strap before removing the new circuit board from the conductive packet.
- Remove boards from the drive and immediately insert them into their conductive packets.

Tools

For a list of tools required, tightening sequences, and fastener torque specifications, refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.
Test 1
Testing the Gate Driver Board

The Gate Driver Board is located behind the Main Control Board, on the PC Board Mounting Frame. If power modules were replaced, replace the Gate Driver Board. If a new Gate Driver Board is not available, test the old board using the following procedure.

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 • TB20 and TB21 on drives using a PLC Comm Adapter Board
 • TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Remove the Control Board/Adapter Mounting Plate. Refer to Chapter 2 – Disassembly and Access Procedures, Removing the Control Board/Adapter Mounting Plate.
6. Test Gate Driver Board fuses F1 and F3 for an open condition. Replace the Gate Driver Board if either fuse shows an open condition.
7. Set your meter to test diodes.
8. Test VR1 – VR6. The following table shows meter connections at the components and ideal meter readings for those connections. Refer to the previous illustration for component locations.
Table 3.A
Gate Driver Board Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Meter (+) Lead</th>
<th>Meter (–) Lead</th>
<th>Nominal Meter Reading*</th>
</tr>
</thead>
<tbody>
<tr>
<td>VR1 – VR6</td>
<td>+</td>
<td>–</td>
<td>1.06</td>
</tr>
<tr>
<td></td>
<td>–</td>
<td>+</td>
<td>1.8</td>
</tr>
</tbody>
</table>

Note: Typical malfunction is shorted in both directions.

*M Meter Used: Fluke® Model 87, set to “Diode” range.

9. Replace the Gate Driver Board if your readings do not match the table readings. Refer to Chapter 2 – Disassembly and Access Procedures, Removing the Gate Driver Board.

10. Check all six reverse-bias Zener diodes: D10, D66, D65, D78, D71, and D72. The following table shows meter connections at the components and ideal meter readings for those connections. Refer to the previous illustration for component locations.

Table 3.B
Zener Diode Test

<table>
<thead>
<tr>
<th>Component</th>
<th>Meter (+) Lead</th>
<th>Meter (–) Lead</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>D78</td>
<td>+</td>
<td>–</td>
<td>less than 1 open</td>
</tr>
<tr>
<td>D71</td>
<td>–</td>
<td>+</td>
<td>less than 1 open</td>
</tr>
<tr>
<td>D72</td>
<td>+</td>
<td>–</td>
<td>less than 1 open</td>
</tr>
<tr>
<td>D65</td>
<td>–</td>
<td>+</td>
<td>less than 1 open</td>
</tr>
<tr>
<td>D66</td>
<td>+</td>
<td>–</td>
<td>less than 1 open</td>
</tr>
<tr>
<td>D10</td>
<td>–</td>
<td>+</td>
<td>less than 1 open</td>
</tr>
</tbody>
</table>

11. Replace the Gate Driver Board if your readings do not match the table, or if any diode is shorted or open in both directions. Refer to Chapter 2 – Disassembly and Access Procedures, Removing the Gate Driver Board.

12. Assemble the drive in reverse order of disassembly.
ATTENTION: When removing the entire wire harness connecting Gate Driver Board connector J9 to Precharge Board connector J3, align the wires on the harness terminals with the pins on the board connectors. Incorrect harness connection may result in faulty drive operation and may damage the equipment.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
If Power Modules have been replaced, you must test the Power Module Snubber Board, the Precharge Board, and the Gate Driver Board.

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
Component Test Procedures

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 • TB20 and TB21 on drives using a PLC Comm Adapter Board
 • TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Set your meter to test resistance.
6. Test Precharge Board fuses F1, F2, and F3 for open conditions.
7. Replace the Precharge Board if any fuse shows an open condition. Refer to Chapter 2 – Disassembly and Access Procedures, Removing the Precharge Board.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
The Power Modules are located on three heat sinks in the Inverter Housing Assembly. If Power Modules have been replaced, you must check the corresponding Power Module Snubber Board and Snubber Resistor in addition to replacing the Gate Driver Board. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

Figure 3.3

Power Module Test
ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.
7. Set your meter to test diodes.
8. Test the Power Modules. The following table shows meter connections and ideal meter readings for those connections. Refer to the former illustration for meter connection locations.
Table 3.C
Power Modules

<table>
<thead>
<tr>
<th>Meter (+) Lead</th>
<th>Meter (−) Lead</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>C</td>
<td>0.318 ± 0.1</td>
</tr>
<tr>
<td>E</td>
<td>G</td>
<td>Infinite</td>
</tr>
<tr>
<td>C</td>
<td>E</td>
<td>Infinite</td>
</tr>
<tr>
<td>C</td>
<td>G</td>
<td>Infinite</td>
</tr>
<tr>
<td>G</td>
<td>E</td>
<td>Infinite</td>
</tr>
<tr>
<td>G</td>
<td>C</td>
<td>Infinite</td>
</tr>
</tbody>
</table>

9. Replace a Power Module if meter readings are not as shown. Refer to Chapter 4 – Part Replacement Procedures, Power Modules.

10. Set your meter to measure resistance.

11. Test the Power Module Snubber Resistors. The reading should be 16 ohms each. If open, replace the snubber resistor.

Two 16-ohm resistors are in parallel when plugged into a snubber board, resulting in 8 ohms total.

12. Assemble the drive in reverse order of disassembly.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Test 4
Testing the Bus Capacitors

The Bus Capacitor Bank is located in the Capacitor Bank Assembly.

Figure 3.4
Bus Capacitor Bank Test

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.
Access the drive:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 3.4.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

Test the Capacitors:

1. Set your meter to test voltage.
2. Connect the negative lead of the meter to –DC and the positive lead to the capacitor terminal called out in Figure 3.4.

ATTENTION: Servicing energized industrial control equipment can be hazardous. Electrical shock, burns, or unintentional actuation of controlled industrial equipment may cause death or serious injury. Follow the safety-related practices of NFPA 70E, Electrical Safety for Employee Workplaces, when working on or near energized equipment. Do not work alone on energized equipment.

3. Apply power AFTER the meter is connected, otherwise your meter will read zero volts.

Refer to Table 3.D for nominal meter readings.

<table>
<thead>
<tr>
<th>Table 3.D Capacitor Test Meter Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Series</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

[^1]: If the capacitors are normal, the meter reading should be one third the voltage across the total capacitor bank.

4. Using this procedure, test each of the three Capacitor Bank sections. Table 3.E shows the correct voltage for the total Capacitor Bank.
Table 3.E
Bus Capacitor Bank Test

<table>
<thead>
<tr>
<th>Drive Rating</th>
<th>Input Volts</th>
<th>Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>380</td>
<td>535V DC +/-10%</td>
</tr>
<tr>
<td></td>
<td>415</td>
<td>580V DC +/-10%</td>
</tr>
<tr>
<td></td>
<td>480</td>
<td>650V DC +/-10%</td>
</tr>
<tr>
<td>C</td>
<td>500</td>
<td>700V DC +/-10%</td>
</tr>
<tr>
<td></td>
<td>575</td>
<td>800V DC +/-10%</td>
</tr>
<tr>
<td></td>
<td>600</td>
<td>850V DC +/-10%</td>
</tr>
</tbody>
</table>

5. If the voltage is out of tolerance, check the following:
 • An open condition at an Input Rectifier.
 • A voltage drop due to DC Bus Inductor resistance.
 • A voltage drop between an Input Rectifier and the bus capacitors due to loose or resistive wires or connections.
 • Precharge circuit problems.

6. If the above check does not reveal a problem, replace the Bus Capacitor Bank and Load-Sharing Resistors. Refer to Chapter 4 – Part Replacement Procedures, Bus Capacitor Bank.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Test 5
Testing the SCRs

The SCRs are located in the heat sinks on the Inverter Housing Assembly.

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions in Chapter 2 – Disassembly and Access Procedures.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Access the drive:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 • TB20 and TB21 on drives using a PLC Comm Adapter Board
 • TB5, TB6, and TB7 on drives using a Standard Adapter Board

Test the SCRs:

1. Set your meter to test resistance.
2. Measure resistance from AC inputs L1, L2, and L3 to +DC. Refer to Table 3.F.
3. Measure between each pair of gate and cathode terminals on the Precharge Board. Refer to Table 3.G.
The following tables show meter connections and ideal meter readings for those connections. Refer to the schematic in this manual for more information.

Table 3.F
SCR Test at AC Input

<table>
<thead>
<tr>
<th>Meter (+) Lead</th>
<th>Meter (–) Lead</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td></td>
<td>+DC</td>
</tr>
<tr>
<td>L2</td>
<td>L1</td>
<td>Infinite</td>
</tr>
<tr>
<td>L3</td>
<td>L2</td>
<td>–DC</td>
</tr>
</tbody>
</table>

Table 3.G
SCR Test at Precharge Board

<table>
<thead>
<tr>
<th>SCR</th>
<th>Meter (+) Lead</th>
<th>Meter (–) Lead</th>
<th>Nominal Meter Reading</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR1</td>
<td>R1G</td>
<td>R1K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>R1K</td>
<td>R1G</td>
<td>10</td>
</tr>
<tr>
<td>SCR3</td>
<td>S1G</td>
<td>S1K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>S1G</td>
<td>S1G</td>
<td>10</td>
</tr>
<tr>
<td>SCR5</td>
<td>T1G</td>
<td>T1K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>T1K</td>
<td>T1G</td>
<td>10</td>
</tr>
<tr>
<td>J2 Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SCR4</td>
<td>R2G</td>
<td>R2K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>R2K</td>
<td>R2G</td>
<td>10</td>
</tr>
<tr>
<td>SCR6</td>
<td>S2G</td>
<td>S2K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>S2K</td>
<td>S2G</td>
<td>10</td>
</tr>
<tr>
<td>SCR2</td>
<td>T2G</td>
<td>T2K</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>T2K</td>
<td>T2G</td>
<td>10</td>
</tr>
</tbody>
</table>

4. Replace the SCR if any meter readings are not as shown. Refer to Chapter 4 – Part Replacement Procedures, SCRs.

5. If an SCR requires replacement, check the Power Modules for damage. Refer to Testing the Power Modules in this chapter.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Chapter 4

Part Replacement Procedures

Chapter Objective
This chapter describes procedures required to replace drive components. This chapter references Chapter 2 – Disassembly and Access Procedures for basic drive component access.

Part Replacement Overview
The part replacement procedures in this chapter assume that the drive you are servicing either has no enclosure or that the enclosure is open. For more information on opening the Drive Enclosure, refer to Chapter 2 – Disassembly and Access Procedures, Opening the Drive Enclosure.

Safety Precautions

ATTENTION: Some printed circuit boards and drive components may contain hazardous voltage levels. Remove power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Verify bus voltage by measuring the voltage between between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
Electrostatic Discharge Precautions

ATTENTION: This assembly contains parts and sub-assemblies that are sensitive to electrostatic discharge. Static control precautions are required when servicing this assembly. Component damage may result if you ignore electrostatic discharge control procedures. If you are not familiar with static control procedures, reference Allen-Bradley Publication 8000–4.5.2, Guarding Against Electrostatic Discharge, or any other applicable ESD protection handbook.

Electrostatic discharge generated by static electricity can damage the complimentary metallic oxide semiconductor devices on various drive boards. It is recommended that you perform these procedures to guard against this type of damage when circuit boards are removed or installed:

- Wear a wrist-type grounding strap that is grounded to the chassis.
- Attach the wrist strap before removing the new circuit board from the conductive packet.
- Remove boards from the drive and immediately insert them into their conductive packets.

For a list of tools required, tightening sequences, and fastener torque specifications, refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.
This section explains in detail how to replace the following drive components:

- Bus Capacitor Bank
- Thermistor
- Power Modules
- Power Module Snubber Resistor
- SCRs
- Fans and Transformer Assembly
- DC Bus Inductor
- Ground Sense CT
- Bus Fuses
- LEMs
- MOV Surge Suppressor
- Thermal Switch

For Gate Driver Board, Precharge Board, Main Control Board, Standard Adapter Board, PLC Comm Adapter Board, Snubber Board, and Control Interface L-Option Board installation and removal procedures, refer to Chapter 2.

Allen-Bradley Adjustable Frequency AC Drives are modular by design to enhance troubleshooting and spare parts replacement, thereby helping reduce production down-time.

The following illustration calls out the main components of a typical drive. Component designs vary slightly among the different drive ratings, but component locations are identical.
Figure 4.1
Main Drive Components
Bus Capacitor Bank

The Bus Capacitor Bank is located in the Capacitor Bank Assembly.

Figure 4.2
Bus Capacitor Bank
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

Remove the Motor Buses:

1. Remove the screws fastening each motor bus to the top of its Terminal Strip near the bottom of the Capacitor Bank Assembly.
2. Remove the screws fastening the motor buses to the Motor Bus Bottom Support.
3. Remove the motor buses.

Access the Capacitors:

1. Remove the screws fastening the wires from the Balancer Plate assembly to the capacitors.
2. Remove the screws, nuts, and washers fastening the Capacitor Laminated Bus Bar to the capacitors.
3. Remove the Capacitor Laminated Bus Bar and attached components.

4. Remove the plastic caps at the four corners of each capacitor insulator.

5. Remove the capacitors from the drive.

Installation

1. Install the capacitor assembly in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

Important: Position the notch and vent hole on the Bus Capacitors to the top of the drive.

2. Connect the Load-Sharing Resistors to the Bus Capacitors according to the following diagram. Refer to the schematic diagrams in this manual for more information on component configurations.

Figure 4.3
Load-Sharing Resistor Connections to Bus Capacitors
ATTENTION: Capacitors not installed correctly will explode or vent and may cause death or serious injury. Observe correct polarities.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

Thermistor

The Thermistor is located at the top of the heat sink in the Inverter Housing Assembly.

Figure 4.4
Thermistor
Part Replacement Procedures

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing Connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between TP3 and plus (+) bus to discharge any voltage. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Disconnect Main Control Board Connector J1.

6. Remove the Thermistor.

Installation

Install the Thermistor in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Power Modules

The Power Modules are located on the heat sink toward the back of the Inverter Housing Assembly. If one or more Power Modules is replaced, you must check the Power Module Snubber Board, the Precharge Board, and the Gate Driver Board.

Figure 4.5
Power Modules
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between TP3 and plus (+) bus to discharge any voltage. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.

6. Remove the screws fastening the positive and negative snubber bus bars to the Power Module Bus Bar.

7. Remove the screws fastening the Power Module Bus Bar to the Power Modules.

8. Carefully remove the bus bar. Do not damage the insulation.

9. Remove the screws fastening the Power Module Gate Interface Boards to the Power Modules.

10. Remove the Power Module Gate Interface Boards.

11. Remove the screws fastening the Power Module to the heat sink. Refer to Figure 2.3 in Chapter 2 – Disassembly and Access Procedures. Follow the torque sequence, as illustrated, for both removal and installation.

Installation

1. Clean all surfaces between the Power Module and the heat sink using a soft, clean cloth.

2. Replace the preform between the Power Module and the heat sink.

ATTENTION: Do not substitute longer or shorter hardware when fastening the Power Module components to the Power Modules. Use the same size fastener to fasten the components as was originally used. Using different fastener lengths will damage the Power Modules.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Power Module Snubber Resistor

The Power Module Snubber Resistors are located on the main heat sink at the back of the Inverter Housing Assembly.
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.
6. Remove the Power Module Snubber Resistor connectors from the J1 and J2 connectors on the Power Module Snubber Board.
7. Remove the screws fastening the Power Module Snubber Resistor to the main heat sink.
Installation

Install the Power Module Snubber Resistor in reverse order of removal.

Important: Install the resistors with the markings to the right.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.

SCRs

The SCRs are located in the heat sinks on the upper front part of the Inverter Housing Assembly. Each of the two heat sinks contains one long and three short sections. The cross bars link the sections, holding the SCRs in the middle. Refer to Figure 4.8.

Figure 4.7
SCR Location
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing Connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between TP3 and plus (+) bus to discharge any voltage. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Access the heat sink:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and −DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.

7. Remove the snubber insulator and attached snubber buses.

Remove the short section of the heat sink:

1. Remove the nuts from the ends of the cross bars.

2. Remove the spring bars.

3. Remove the short section of the heat sink. The long section, attached to the Converter Back-up Plate, remains in place.
Access the SCRs:

1. Remove the wires from the SCR.
2. Remove the SCR.

Installation

1. Adjust the roll pins in each heat sink half to extend 1.5 mm (0.060 in) toward the inside of the heat sink.
2. Apply silicone oil to the heat sink in the areas around the roll pins.
3. Clean the surface of the SCR and place it on the roll pin.
4. Apply silicone oil to the other side of the SCR.
5. Install the SCR Heat Sink in reverse order of removal. Allow access to the SCR gate connections.
6. Attach the wires to the SCR.

Important: Refer to the torque gauge on the spring bars on the left side of the heat sink. Without load, the torque gauge should read zero. If it does not, replace the spring bar assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Fan and Transformer Assembly

The two fans are located at the bottom of the Inverter Housing Assembly. The Fan Transformer and Fan Capacitors are located in the bottom left corner, attached to Fan 1. Both fans and the Transformer Assembly can be replaced without pulling out the Inverter Housing Assembly.

Figure 4.9 Fan and Transformer Assembly
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing Connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between TP3 and plus (+) bus to discharge any voltage. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
Remove the Fan Transformer:
1. Remove the wiring harness to the Fan Transformer Assembly.
2. Turn the thumb latch, fastening the Transformer Assembly to Fan 1, 1/4 turn counterclockwise.
3. Tilt the Transformer Assembly forward and lift it from the mounting bracket.

Remove Fan 1:
1. Disconnect the fan wiring harness.
2. Pull down on both spring pins fastening the fan to the Inverter Housing Assembly.
3. Pull the fan toward you to remove it.

Remove Fan 2:
1. Disconnect the Fan wiring harness.
2. Remove the screws fastening the fan cover to the fan.
3. Turn the standoffs, fastening the fan to the Inverter Housing Assembly, 1/4 turn counterclockwise to remove the fan.

Installation
Install the Fan and Transformer Assembly in reverse order of removal.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
DC Bus Inductor

The DC Bus Inductor is located in the lower part of the Capacitor Bank Assembly, behind the Terminal Strips and Motor Buses.
Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
6. Remove the Inductor Flex Cable and the Ground Sense CT. Refer to Removing the Ground Sense CT in this chapter.
7. Remove the Inductor Flex Bus.
8. Remove the two inductor power bus connections.
9. Remove the screws fastening the inductor to the Inductor Mounting Plate.
Important: Note the position and orientation of the Ground Sense CT (CT3) around the (–)Bus terminal at the top of the DC Bus Inductor. The Ground Sense CT is removed with the inductor. Install the Ground Sense CT in the same position. Check that the (+)Bus cable to the fuse passes through the Ground Sense CT during assembly.

10. Remove the DC Bus Inductor from the drive.

Installation

Install the DC Bus Inductor in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Ground Sense CT

The Ground Sense CT is located between the DC Bus Inductor and the Transitional Bus Bar Assembly.

Figure 4.11
Ground Sense CT

Removeal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.
Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.

2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.

3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.

4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

6. Remove the Ground Sense CT connector J2 from the Gate Driver Board.

7. Remove the nut and washers fastening the end of the Inductor Flexible Cable to the right-angled connector on the right side of the DC Bus Inductor.

8. Remove the Inductor Flex Cable from the right side inductor power bus connection.

9. Slide the Ground Sense CT from the Inductor Flex Cable.

Installation

Install the Ground Sense CT in reverse order of removal, inserting the Inductor Flex Cable through the center of the Ground Sense CT. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: A possible short-circuit hazard exists. Position the fuse-to-inductor wire with the shrink-wrapped end of the wire connected to the DC Bus Inductor. Failure to position the wire as illustrated may result in serious injury or equipment damage.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Bus Fuses

The Bus Fuses are located on the Transitional Bus Bar assembly.

Figure 4.12
Bus Fuse

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Access the drive:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Remove the nuts and washers fastening the Bus Fuse to the drive.

Installation

Install the Bus Fuse in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
LEMs

The LEMs are located in the Capacitor Bank Assembly, above the Terminal Strips.

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.
Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

Access the LEMs:

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board

Remove the LEM:

1. Remove the wires from the LEM connectors.
2. Remove the two screws fastening the LEM mounting plate to the LEM.
3. Remove the LEM U-shaped top plate and the LEM U-shaped plate.
4. Remove the screws and standoffs fastening the LEM to the assembly frame.
5. Remove the Terminal Strip from the motor bus.
6. Disconnect the motor bus from the Motor Bus Support.
7. Disconnect the motor bus at its upper end.
8. Remove the motor bus and LEM from the Capacitor Bank Assembly frame.
9. Remove the LEM from the motor bus.

Installation

Install the LEMs in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
MOV Surge Suppressor

The MOV Surge Suppressor is located on the left side of the Inverter Housing Assembly in the top-left corner at the back of the drive near the vertical bus bars.

The MOV protects the drive from high voltage surges above approximately 1,000 volts. Replace it if it is burned, expanded, or ruptured after a lightening strike, or inadvertent connection of the drive input to a voltage source substantially above nameplate voltage.

Figure 4.14
MOV Surge Suppressor

Removal

ATTENTION: Disconnect and lock out power from the drive before disassembling the drive. Failure to disconnect power may result in death or serious injury. Verify bus voltage by measuring the voltage between the Negative Capacitor Bus and both ends of all three 350 amp fuses. An open fuse does not show voltage across both ends of the fuse. Failure to measure voltage at both ends of the fuses may result in death or serious injury. Refer to Figure 2.5. Do not attempt to service the drive until the bus voltage has discharged to zero volts.
ATTENTION: Hazard of electric shock exists. Up to 1,600 VDC will be on Power Module Snubber Board Connector J1 if the Snubber Resistor is open. Measure for zero VDC from Snubber Board terminal TP3 to plus (+) bus before removing connector J1. Use a resistor greater than 1 ohm and less than 100 ohm, rated for 25 watts minimum, between TP3 and plus (+) bus to discharge any voltage. Refer to Chapter 2 – Disassembly and Access Procedures, Removing a Power Module Snubber Board.

ATTENTION: Wear a wrist-type grounding strap when servicing 1336 FORCE Drives. Failure to protect drive components against ESD may damage drive components. Refer to Electrostatic Discharge Precautions at the beginning of this chapter.

Important: Before you remove connections and wires from the drive components, mark the connections and wires to correspond with their component connections and terminals to prevent incorrect wiring during assembly.

1. Remove power from the drive.
2. Open the PC Board Mounting Frame. Refer to Opening the Drive Enclosure in Chapter 2.
3. Check for zero volts between +DC and –DC. Refer to Figure 2.5.
4. Check for the absence of control voltage at:
 - TB20 and TB21 on drives using a PLC Comm Adapter Board
 - TB5, TB6, and TB7 on drives using a Standard Adapter Board
5. Access the Inverter Housing Assembly. Refer to Chapter 2 – Disassembly and Access Procedures, Access to the Inverter Housing Assembly.
6. Remove the MOV wire harness from the vertical bus bars on the left at the back of the Inverter Housing Assembly.
7. Remove the screw fastening the MOV to the Inverter weldment.
Installation

Install the MOV Surge Suppressor in reverse order of removal. Refer to Chapter 2 – Disassembly and Access Procedures, Fastener Torque Specifications.

ATTENTION: Replace all guards before applying power to the drive. Failure to replace guards may result in death or serious injury.
Chapter Objectives

This chapter illustrates and lists replacement parts for the 1336 FORCE Drives rated B300 – B600, C300 – C600, and BX250, and describes replacement parts ordering procedures.

The following illustration and table show you parts, part names, part numbers, locations, and chapters for replacement procedures.

Ordering Replacement Parts

For your convenience, the Allen-Bradley Drives Division and the Allen-Bradley Support Division provide efficient and convenient repair and exchange for eligible equipment.

A product service report number is required to return any equipment for repair. Your local Allen-Bradley distributor or area sales and support office can provide you with a product service report number.

You should return equipment to be repaired to the area sales and support center nearest you. Reference the product service report number on the carton and packing slip. Include:

- Your company name
- Your company address
- The repair purchase order number
- A brief description of the problem

Contact your local Allen-Bradley distributor or sales office for a complete listing of area sales and support centers near you.

For parts catalog numbers, refer to the 1336 PLUS Spare Parts Pricing publication included with your drive documentation set.
Replacement Parts Listing

Figure 5.1
Parts for B300 – B600, C300 – C600, and BX250 Drives
Table 5.A
Replacement Parts for B300 – B600, C300 – C600, and BX250 Drives

<table>
<thead>
<tr>
<th>Callout</th>
<th>Symbol</th>
<th>Description</th>
<th>Location</th>
<th>Replacement Procedures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MOV</td>
<td>MOV Surge Suppressor</td>
<td>Inverter Housing Assembly</td>
<td>Chapter 4, MOV Surge Suppressor</td>
</tr>
<tr>
<td>2</td>
<td>Q11, Q12, Q21, Q22 Q31, Q32, Q41, Q42 Q51, Q52, Q61, Q62</td>
<td>Transistor (Power Module)</td>
<td>Inverter Housing Assembly main</td>
<td>Chapter 4, Power Modules</td>
</tr>
<tr>
<td>3</td>
<td>R20 – R25</td>
<td>Power Module Snubber</td>
<td>Inverter Housing Assembly main</td>
<td>Chapter 2, Removing a Power Module</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Resistor</td>
<td>heat sink</td>
<td>Snubber Board</td>
</tr>
<tr>
<td>4</td>
<td>A23 – A28</td>
<td>Power Module Gate Interface</td>
<td>Power Module</td>
<td>Chapter 4, Power Modules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Board</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NTC1</td>
<td>Thermistor</td>
<td>Inverter Housing Assembly main</td>
<td>Chapter 4, Thermistor</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heat sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>A20 – A22</td>
<td>Power Module Snubber Board</td>
<td>Power Module</td>
<td>Chapter 2, Removing a Power Module</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Snubber Board</td>
</tr>
<tr>
<td>7</td>
<td>R1 – R9</td>
<td>Load-Sharing Resistor</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, Bus Capacitor Bank</td>
</tr>
<tr>
<td>8</td>
<td>C1 – C36</td>
<td>Bus Capacitors</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, Bus Capacitor Bank</td>
</tr>
<tr>
<td>9</td>
<td>L1</td>
<td>DC Bus Inductor</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, DC Bus Inductor</td>
</tr>
<tr>
<td>10</td>
<td>CT3</td>
<td>Ground Sense CT</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, Ground Sense CT</td>
</tr>
<tr>
<td>11</td>
<td>CT1, CT2</td>
<td>LEM</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, LEMs</td>
</tr>
<tr>
<td>12</td>
<td>F1 – F3</td>
<td>Bus Fuse, 350 amp</td>
<td>Capacitor Bank Assembly</td>
<td>Chapter 4, Bus Fuses</td>
</tr>
<tr>
<td>13</td>
<td>THS1</td>
<td>Thermal Switch SW1</td>
<td>Inverter Housing Assembly,</td>
<td>Chapter 4, SCRs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>upper SCR heat sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>FAN 1</td>
<td>Fan 1</td>
<td>Inverter Housing Assembly</td>
<td>Chapter 4, Fan and Transformer Assembly</td>
</tr>
<tr>
<td>15</td>
<td>T1</td>
<td>Fan Transformer</td>
<td>Inverter Housing Assembly</td>
<td>Chapter 4, Fan and Transformer Assembly</td>
</tr>
<tr>
<td>16</td>
<td>C38, C39</td>
<td>Fan Capacitor</td>
<td>Inverter Housing Assembly</td>
<td>Chapter 4, Fan and Transformer Assembly</td>
</tr>
<tr>
<td>17</td>
<td>FAN 2</td>
<td>Fan 2</td>
<td>Inverter Housing Assembly</td>
<td>Chapter 4, Fan and Transformer Assembly</td>
</tr>
<tr>
<td>18</td>
<td>SCR1 – SCR6</td>
<td>SCR</td>
<td>Inverter Housing Assembly, SCR</td>
<td>Chapter 4, SCRs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>heat sinks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>A11 – A13</td>
<td>Input Rectifier Snubber</td>
<td>Inverter Housing Assembly, SCR</td>
<td>Chapter 2, Removing the Input Rectifier Snubber Board</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Board</td>
<td>heat sinks</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>A1</td>
<td>Gate Driver Board</td>
<td>PC Board Mounting Frame</td>
<td>Chapter 2, Removing the Gate Driver Board</td>
</tr>
<tr>
<td>21</td>
<td>A10</td>
<td>Precharge Board</td>
<td>PC Board Mounting Frame</td>
<td>Chapter 2, Removing the Precharge Board</td>
</tr>
<tr>
<td>22</td>
<td>MAIN CTL</td>
<td>Main Control Board</td>
<td>PC Board Mounting Frame</td>
<td>Chapter 2, Removing the Main Control Board</td>
</tr>
<tr>
<td>23</td>
<td>GT2</td>
<td>Standard Adapter Board</td>
<td>PC Board Mounting Frame</td>
<td>Chapter 2, Removing the Standard Adapter Board</td>
</tr>
<tr>
<td>24</td>
<td>GT1</td>
<td>PLC Comm Adapter Board</td>
<td>PC Board Mounting Frame</td>
<td>Chapter 2, Removing the PLC Comm Adapter Board</td>
</tr>
</tbody>
</table>
Based on drive input voltage, either a 380/460V or a 575V fan autotransformer will be provided. The table below defines the autotransformer tap voltage.

<table>
<thead>
<tr>
<th>Tap Definition</th>
<th>380/460V Transformer</th>
<th>575V Transformer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nominal</td>
<td>460</td>
<td>575</td>
</tr>
<tr>
<td>-10%</td>
<td>415</td>
<td>500</td>
</tr>
<tr>
<td>Optional</td>
<td>380</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Capacitor Detail

575V

460V

Publication 1336 FORCE-6.15 – August, 1999
Table 1: Customer Fusing

Based on maximum drive rating, the following fuses or approved equivalents must be used:

<table>
<thead>
<tr>
<th>HORSEPOWER</th>
<th>380/460V FUSE I/TYPE</th>
<th>575VAC FUSE CURRENT/TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>X250</td>
<td>450 A70C OR FWH</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>450 A70C OR FWH</td>
<td>400 A70C OR FWH</td>
</tr>
<tr>
<td>350</td>
<td>500 A70C OR FWH</td>
<td>450 A70C OR FWH</td>
</tr>
<tr>
<td>400</td>
<td>600 A70C OR FWH</td>
<td>500 A70C OR FWH</td>
</tr>
<tr>
<td>450</td>
<td>800 A70C OR FWH</td>
<td>600 A70C OR FWH</td>
</tr>
<tr>
<td>500</td>
<td>800 A70C OR FWH</td>
<td>800 A70C OR FWH</td>
</tr>
<tr>
<td>600</td>
<td>900 A70C OR FWH</td>
<td>800 A70C OR FWH</td>
</tr>
<tr>
<td>650</td>
<td></td>
<td>900 A70C OR FWH</td>
</tr>
</tbody>
</table>

Table 2: Based on Drive Horsepower, the Inverter DC + Bus Fuse Will Change Amp Rating

The table below defines the fuse rating.

<table>
<thead>
<tr>
<th>DRIVE HORSEPOWER, INPUT VOLTAGE</th>
<th>FUSE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>HP, 380/460VAC</td>
<td></td>
</tr>
<tr>
<td>HP, 575VAC</td>
<td></td>
</tr>
<tr>
<td>500HP, 380/460VAC</td>
<td>300A A70Q 25178-310-14</td>
</tr>
<tr>
<td>600HP, 575VAC</td>
<td>300A A70Q 25178-310-14</td>
</tr>
</tbody>
</table>

Table 3: The Following is a Listing of All Printed Circuit Assemblies Versus Fuse & Documentation Information

<table>
<thead>
<tr>
<th>ITEM</th>
<th>B/M</th>
<th>SCHEMATIC DIAGRAM</th>
<th>FUSE INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A11–13</td>
<td>74101–367–XX</td>
<td>74101–365 NONE</td>
<td></td>
</tr>
<tr>
<td>A20–22</td>
<td>74101–146–XX</td>
<td>74101–144 NONE</td>
<td></td>
</tr>
<tr>
<td>A23–28</td>
<td>74101–177–XX</td>
<td>74101–175 NONE</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>74101–121 F4–F5</td>
<td>3A/600V FNQR 25184–254–20</td>
</tr>
</tbody>
</table>
This Page Intentionally Left Blank.
Glossary

AC Contactor: An alternating-current (AC) contactor is designed for the specific purpose of establishing or interrupting an AC Power circuit.

Adjustable Speed: The concept of varying the speed of a motor, either manually or automatically. The desired operating speed (set speed) is relatively constant regardless of load.

Adjustable Speed Drive (Electrical): The adjustable speed drive is comprised of the motor, drive controller and operator’s controls (either manual or automatic).

Ambient Temperature: The temperature of the medium (air, water, earth) into which the heat of the equipment is dissipated.

Base Speed: The manufacturer’s nameplate rating where the motor will develop rated power at rated load and voltage. With DC drives, it is commonly the point where full armature voltage is applied with full-rated field excitation. With AC systems, it is commonly the point where 60 Hz is applied to the induction motor.

BR: Refer to Bridge Rectifier.

Braking: A method of stopping or reducing the time required to stop an AC motor, and can be accomplished in several ways:

1. DC-Injection braking (AC drives) — A method which produces electromagnetic braking forces in the motor by removing 2 AC motor (stator) phases and injecting DC current. The result is a linear braking characteristic (ramp) that does not diminish with motor speed. Application is normally limited to 10–20% of rated motor speed due to increased heating in the rotor.

2. Dynamic braking (AC drives) — A method which produces electromagnetic braking forces in the motor by dissipating generated power into the DC bus through a resistive load. Braking force remains constant and is only limited by the thermal capacity of the resistors. The result is a linear braking characteristic (ramp) that does not diminish with motor speed.

3. Regenerative braking — A method which produces electromagnetic braking forces in the motor by electronically controlling the return of generated power to the AC supply. The result is a controllable linear braking characteristic (ramp) that does not diminish with motor speed.
4. **Motor-mounted or separately-mounted brake** — A positive-action, mechanical friction device. Normal configuration is such that when the power is removed, the brake is set. This can be used as a holding brake. (Note: A separately mounted brake is not one which is located on some part of the mechanical drive train other than the motor.)

Breakaway Torque: The torque required to start a machine from standstill. Breakaway torque is always greater than the torque needed to maintain motion.

Breakdown Torque: The breakdown torque of an AC motor is the maximum torque which it will develop with rated voltage applied at rated frequency.

Bridge Rectifier (Diode, SCR): A non-controlled, full-wave rectifier that produces a constant, rectified, DC voltage. An SCR bridge rectifier is a full-wave rectifier with a DC output that can be controlled by switching on the gate control element.

Bridge Rectifier: A full-wave rectifier that conducts current in only one direction of the input current. AC applied to the input results in approximate DC at the output.

British Thermal Unit (BTU): The quantity of heat required to raise one pound of water by one degree Fahrenheit.

BTU: Refer to *British Thermal Unit*.

Bus: A single path or multiple parallel paths for power or data signals to which several devices may be connected at the same time. A bus may have several sources of supply and/or several sources of demand.

Bus Sense: A signal transducer that generates a signal proportional to the current in the drive’s DC bus. The control logic uses this signal to sense the presence or absence of bus voltage.

CEMF: Refer to *Counter Electromotive Force*.

CMOS: Complimentary Metallic Oxide Semiconductor. A semiconductor device in which an electric field controls the conductance of a channel under a metal electrode called a gate.

Cogging: A condition in which a motor does not rotate smoothly but steps or jerks from one position to another during shaft revolution. Cogging is most pronounced at low motor speeds and can cause objectionable vibrations in the driven machinery.
Constant Torque Range: A speed range in which a motor is capable of delivering a constant torque, subject to cooling limitations of the motor.

Constant Voltage Range: (AC Drives) The range of motor operation where the drive’s output voltage is held constant as output frequency is varied. This speed range produces motor performance similar to a DC drive’s constant horsepower range.

Constant Volts per Hertz (V/Hz): The V/Hz relationship exists in AC drives where the output voltage is directly proportional to frequency. This type of operation produces constant rated torque as the motor’s speed varies.

Continuous Duty (CONT): A motor that can continue to operate without stopping and remain within the insulation temperature limits after it has reached normal operating (equilibrium) temperature.

Converter:

1. A device for changing AC to DC. This is accomplished through use of a diode rectifier or thyristor rectifier circuit.

2. A device for changing AC to DC to AC (e.g., adjustable frequency drive). A frequency converter, such as that found in an adjustable frequency drive, consists of a rectifier, a DC intermediate circuit, an inverter, and a control unit.

Counter Electromotive Force (CEMF): The product of a motor armature rotating in a magnetic field. This generating action takes place whenever a motor is rotating. Under stable motoring conditions the generated voltage (CEMF) is equal to the voltage supplied to the motor minus small losses. However, the polarity of the CEMF is opposite to that of the power being supplied to the armature.

Current Limiting: An electronic method of limiting the maximum current available to the motor. This is adjustable so that the motor’s maximum current can be controlled. It can also be preset as a protective device to protect both the motor and the control from extended overloads.

DC Boost: Compensates for the voltage drop across the resistance of an AC motor circuit and the resulting reduction in torque.

DC Bus: A drive’s power structure that transmits a rectified AC line power from the bridge rectifier to the output transistors.

DC Hold: Describes a “holding brake” function to stop motor rotation after a ramp-to-stop function is activated.

Diode: A solid-state uni-directional conductor.
Drift: A slow change in some characteristic of a device. For a drive, it is the deviation from the initial set speed with no load change over a specific time period. Normally the drive must be operated for a specified warm-up time at a specified ambient temperature before drift specifications apply. Drift is normally caused by random changes in operating characteristics of various control components.

Drive Controller (Variable Speed Drive) (Drive): An electronic device that can control the speed, torque, horsepower, and direction of an AC or DC motor.

1. **PWM drive** — is a motor drive using pulse-width modulation techniques to control power to the motor. A high-efficiency drive used for high-response applications.
2. **SCR drive** — is a motor drive that uses SCRs as the power control elements. Usually used for low-bandwidth high-power applications.
3. **Servo drive** — is a motor drive that uses internal feedback loops for motor current and/or velocity.
4. **Vector drive** — is an AC static motor drive using power-control techniques that produce motor performance similar to DC static drives.

Duty Cycle:

1. The ratio of working time to total time for an intermittently operating device. Usually expressed as a percentage.
2. The ratio of pulse width to the interval between like portions of successive pulses. Usually expressed as a percentage.

Dynamic Braking: Refer to Braking.

Efficiency: Ratio of output to input, indicated by a percentage. In a motor, it is the effectiveness with which the motor converts electrical energy into mechanical energy. In a power supply, it is the effectiveness with which the power supply converts AC power into DC power.

Electrostatic Discharge (ESD): A static-electricity discharge that may damage drive components. Refer to the ESD precautions found in this manual to guard against damage to drive components.

Enable: To activate logic by the removal of a suppression signal.

Enclosure: The housing in which equipment is mounted. They are available in designs for various environmental conditions. Refer to NEMA standard for specifications of different types of enclosures.
ENUM (Enumeration): An ANSI C standard extension to the C language. An ENUM is a set of named integer constants that specify all the legal values a variable of a given type may have. The keyword ENUM signals the start of an enumeration type.

ESD: Refer to *Electrostatic Discharge*.

Floating Ground: An electrical circuit common which is not at earth ground potential or the same ground potential as circuitry with which it interfaces. A voltage difference can exist between the floating ground and earth ground.

Force: The tendency to change the motion of an object with an exertion of energy from a separate source.

Full Load Torque: The full-load torque of a motor is the torque necessary to produce rated horsepower at full-load speed.

Gate:

1. A logic element that blocks or passes a signal, depending on the status of specified input signals.
2. The control element of an SCR.

GND Sense: A current transducer that detects an unequal or imbalanced current in the three-phase AC line or DC bus of the drive. The imbalance indicates an output ground fault condition.

Horsepower (hp): A unit of power: 1 hp = 33,000 ft-lb/min. = 746 watts.

IEC: International Electrotechnical Commission.

IGBT: Refer to *Insulated Gate Bipolar Transistor*.

Induction Motor: An induction motor is an alternating-current motor in which the primary winding on one member is connected to the power source. A secondary winding on the other member carries the induced current. There is no physical electrical connection to the secondary winding; its current is induced.

Inertia: A measure of a body’s resistance to change in velocity, whether a body is at rest or moving at a constant velocity. The velocity can be either linear or rotational. The moment of inertia (WK^2) is the product of the weight (W) of an object and the square of the radius of gyration (K^2). The radius of gyration is a measure of how the mass of the object is distributed about the axis of rotation. WK^2 is usually expressed in units of lb-ft^2.

Insulated Gate Bipolar Transistor (IGBT): A type of transistor commonly used in drive-control devices.
Integral-Horsepower Motor: A motor that has a continuous rating of 1 hp or more, built into a frame.

International Organization for Standards (ISO): An organization established to promote development of international standards.

Interposing Relay: An interposing relay is a relay that accepts control signals of one logic level in order to provide isolated contact signals in a circuit operating at a different logic level.

Inverter:

1. An AC adjustable frequency drive.

2. A particular section of an AC drive. This section uses the DC voltage from a previous circuit stage (intermediate DC circuit) to produce a pulse-width-modulated or stepped AC current or voltage waveform that has characteristics similar to the desired sine-wave frequency.

3. A circuit whose output signal is the inverse of its input (a positive-going pulse is inverted to a negative-going pulse, and vice versa).

ISO: Refer to *International Organization for Standards*.

Isolation Transformer:

1. A transformer that provides DC isolation from other equipment not connected to that transformer secondary.

2. A transformer that provides noise isolation between the primary and secondary by such means as a Faraday shield.

Jogging:

1. In a numerical control system, an operator manually generating motion (continuously or incrementally) by closing a switch.

2. An operator generating motion by closing a switch.

Kinetic Energy: The energy of motion of a moving body.

LAD: Refer to *Linear Acceleration/Deceleration*.

LEM: A hall-effect current transducer that senses drive output current and generates a signal for the control logic.

Linear Acceleration/Deceleration (LAD): A circuit that controls the rate at which a motor is allowed to accelerate to a set speed or decelerate to zero speed. On most drives, this circuit is adjustable and can be set to accommodate a particular application.

Linearity: A measure of how closely a characteristic follows a straight-line function.
Locked-Rotor Current: Steady-state current taken from the line current with the rotor at standstill (at rated voltage and frequency). This is the current when starting the motor and load.

Locked-Rotor Torque: The minimum torque that a motor will develop at rest for all angular positions of the rotor (with rated voltage applied at rated frequency).

Meggar Test: A test used to measure an insulation system’s resistance. This is usually measured in megohms by applying a high voltage.

MOV: Refer to *Surge Protection*.

National Electrical Code (NEC): A set of regulations governing the construction and installation of electrical wiring and apparatus, established by the National Fire Protection Association and suitable for mandatory application by governing bodies exercising legal jurisdiction. It is widely used by state and local authorities within the United States.

National Electrical Manufacturer’s Association (NEMA): A non-profit organization organized and supported by electrical equipment and supply manufacturers. Some NEMA motor standards include horsepower (hp) ratings, speeds, frame sizes and dimensions, torques, and drive enclosures.

NEC: Refer to *National Electrical Code*.

Negative Slope: The location on a V/Hz curve where the break voltage exceeds the base voltage.

NEMA: Refer to *National Electrical Manufacturer’s Association*.

Offset: The steady-state deviation of a controlled variable from a fixed setpoint.

Op Amp: An operational amplifier. A high-gain stable linear DC amplifier that is designed to be used with external circuit elements.

Open Loop System: A control system that has no means of comparing the output with the input for control purposes.

Overload Capacity: The ability of the drive to withstand currents beyond the system’s continuous rating. It is normally specified as a percentage of full-load current endured for a specified time period. Overload capacity is defined by NEMA as 150% of rated full load current for one minute for “standard industrial DC motors.”
PC:
1. Personal Computer.
2. Programmable Controller.
3. Printed Circuit.

Plugging: A type of motor braking provided by reversing either line voltage polarity or phase sequence so that the motor develops a counter torque that exerts a retarding force to brake the motor.

Pot: A potentiometer, or variable resistor.

Power: Work done per unit of time. Measured in horsepower (hp) or watts (W): 1 hp = 33,000 ft-lb/min. = 746 W.

Power Factor (Displacement): A measurement of the time phase difference between the fundamental voltage and fundamental current in an AC circuit. It represents the cosine of the phase angle difference.
\[F_p = \cos (\alpha - \beta) \]

Power Factor (Distortion): A measurement of the ratio of the real power (kW) to the apparent power (kVA). Distortion power factor takes into account harmonic voltage and current distortion as well as voltage-to-current displacement.

Preform: A flexible material used between an electronic component and the heat sink to which the component is attached. Preform provides maximum heat dissipation from the component to the heat sink.

Preset Speed: Describes one or more fixed speeds at which a drive operates.

Programmable Controller: A solid-state control system that has a user-programmable memory for storage of instructions to implement specific functions such as I/O control, logic, timing, counting, report generation, communication, arithmetic, and data file manipulation. A controller consists of a central processor, input/output interface, and memory. A controller is designed as an industrial control system.

Pull-In Torque: The maximum constant torque to which a synchronous motor accelerates into synchronism at rated voltage and frequency.

Pull-Out Torque: The maximum running torque of a synchronous motor.
Pull-Up Torque: The torque required to accelerate the load from standstill to full speed (where breakdown torque occurs), expressed in percent of running torque. It is the torque required not only to overcome friction, windage, and product loading but also to overcome the inertia of the machine. The torque required by a machine may not be constant after the machine has started to turn. This load type is characteristic of fans, centrifugal pumps, and certain machine tools.

PWM: Pulse-width Modulation. A technique used to eliminate or reduce unwanted harmonic frequencies when inverting DC voltage to sine wave AC.

Reactance: Pure inductance or capacitance, expressed in ohms, in a circuit. It is the component of impedance to alternating current that is not resistance.

Rectifier: A device that conducts current in only one direction, thereby transforming alternating current to direct current.

Regeneration: (AC drives) When the rotor synchronous frequency is greater than the applied frequency.

Regenerative Braking: Slows or stops a motor through regeneration. Refer to *Regeneration and Braking*.

Resolution: The smallest distinguishable increment into which a quantity can be divided (e.g., position or shaft speed). It is also the degree to which nearly equal values of a quantity can be discriminated. For rotary encoders, it is the number of unique electrically identified positions occurring in 360 degrees of input shaft rotation. For D/A or A/D conversion, may be expressed as the number of bits in the digital value that corresponds to a full-scale analog value.

SCR: Silicon Controlled Rectifier. A solid-state uni-directional latching switch.

Service Factor: When used on a motor nameplate, a number that indicates how much above the nameplate rating a motor can be loaded without causing serious degradation (i.e., a motor with 1.15 S-F can produce 15% greater torque than one with 1.0 S-F).

Set Speed: The desired operating speed.

Shock Load: The load seen by a clutch, brake, or motor in a system that transmits high peak loads. This type of load is present in crushers, separators, grinders, conveyors, winches, and cranes.
Slip: The difference between rotating magnetic field speed (synchronous speed) and rotor speed of AC induction motors. Usually expressed as a percentage of synchronous speed.

Slip Compensation: Monitors motor current and compensates for speed lost due to increased motor slip. The amount of slip is proportional to the motor load.

Speed Range: The speed minimum and maximum at which a motor must operate under constant or variable torque load conditions. A 50:1 speed range for a motor with top speed 1800 rpm means the motor must operate as low as 36 rpm and still remain within regulation specification. Controllers are capable of wider controllable speed ranges than motors because there is no thermal limitation, only electrical. Controllable speed range of a motor is limited by the ability to deliver 100% torque below base speed without additional cooling.

Speed Regulation: The numerical measure (percent) of how accurately the motor speed can be maintained. It is the percentage of change in speed between full load and no load. The ability of a drive to operate a motor at constant speed (under varying load), without “hunting” (alternately speeding up and slowing down). It is related to both the characteristics of the load being driven and electrical time constants in the drive regulator circuits.

Surge Protection: The process of absorbing and clipping voltage transients on an incoming AC power line or control circuit. Surge protectors include MOVs (Metal Oxide Varistors) and specially designed R-C networks.

Synchronous Speed: The speed of an AC induction motor’s rotating magnetic field. It is determined by the frequency applied to the stator and the number of magnetic poles present in each phase of the stator windings. Mathematically, it is expressed as: Sync Speed (rpm) = 120 x Applied Freq. (Hz) / Number of poles per phase.

Torque: A turning force applied to a shaft, tending to cause rotation. Torque is equal to the force applied, times the radius through which it acts. Torque is measured in pound-feet, ounce-inches, Newton-meters, or gram-centimeters.

Transducer: A device that converts one energy form to another (e.g., mechanical to electrical). When a transducer is actuated by signals from one system or medium, it can supply a related signal to the other system or medium.

Transient: A momentary power deviation in an electrical or mechanical system.
Transistor: An active solid-state semiconductor device.

Work: A force moving an object over a distance.
(work = force x distance)
Index

A
Adapter Locations, 1–10
Adapters and Communication Ports, Human Interface Module, 1–9
Audience for this Manual, P–1
Auxiliary Input, Definition, P–8
Auxiliary Interlock, Definition, P–8

B
Bit, Definition, P–8
Bus Capacitor Bank
Illustration, 4–5
Installation, 4–7
Load-Sharing Resistors, 4–7
Removal, 4–6
Replacement, 4–5
Bus Capacitors, Testing, 3–12
Bus Fuse
Illustration, 4–28
Installation, 4–29
Removal, 4–28
Replacement, 4–28

C
Capacitor Bank Assembly, 2–26
Access to, 2–36
Installation, 2–38
Removal, 2–37
Capacitors. See Bus Capacitor Bank
Check, Definition, P–8
Component Test, 3–1
Component Test Procedures, 3–1
Connecter, Definition, P–8
Control Interface Board
Installation, 2–10
Removal, 2–9
Control Interface Board Jumpers, 1–3
Jumper Locations, 1–3
Control Interface Board, Definition, P–9
Control Interface Option, 1–3
Control Logic Wiring, 1–1

D
DC Bus Inductor
Illustration, 4–23
Installation, 4–25
Removal, 4–24
Replacement, 4–23
DC Voltage Check, Illustration, 2–8
Default, Definition, P–9
Detailed Product Identification, 4–3
Disassembly and Access Procedures, Tools required, 2–2
Drive, Identification, P–5
Drive Components, Main, 4–4
Drive Enclosure
Closing, 2–8
Illustration, 2–6
Opening, 2–7
Drive Rating Qualifications, P–7

E
Electrostatic Discharge, P–2
Electrostatic Discharge Precautions, P–2
Enable Input, Definition, P–9
Enclosure Type, P–7
ESD, P–2

F
False, Definition, P–9
Fan and Transformer Assembly
Illustration, 4–20
Installation, 4–22
Removal, 4–21
Replacement, 4–20
Fan Capacitors, 4–20
Fan Transformer, 4–20
Fastener Torque Specifications, 2–3
Index

G
Gate Driver Board
Illustration, 2–20
Installation, 2–22
Removal, 2–20
Testing, 3–3
Glossary, G–1
Ground Sense CT
Illustration, 4–26
Installation, 4–27
Removal, 4–26
Replacement, 4–26

H
High Voltage Guard, 2–24
Illustration, 2–23
HIM, Removal, 1–12
Human Interface Module. See Human Interface Module
Human Interface Module (HIM)
Illustration, 1–10
Operation, 1–12

I
Input Mode, 1–5
Factory Default, 1–6
Three-Wire Control, Multi-Source Reversing, 1–7
Three-Wire Control, Single-Source Reversing, 1–6
Two-Wire Control, Single-Source Control, 1–7
Input Rectifier Snubber Board
Illustration, 2–42
Installation, 2–44
Removal, 2–43
Inputs, Available, 1–4
Inverter Housing and Capacitor Bank Assemblies, Access to, 2–25
Inverter Housing Assembly, 2–26
Access to, 2–27
Installation, 2–33
Removal, 2–28

J
Jumper, Definition, P–9

L
Language Modules, P–6
LEMs
Illustration, 4–30
Installation, 4–31
Removal, 4–30
Replacement, 4–30
Load Sharing Resistor Connections, 4–7
Local Programming, 1–4

M
Main Control Board
Illustration, 2–11
Installation, 2–13
Removal, 2–11
Main Control Board Mounting Plate, 2–17
Illustration, 2–17
Installation, 2–19
Removal, 2–18
Major Component Replacement. See Procedures
Manual
Audience, P–1
Objective, P–1
Mounting
Four-Point, 2–4
Six-Point, 2–4
Two-Point, 2–3
MOV Surge Suppressor
Illustration, 4–32
Installation, 4–34
Removal, 4–32
Replacement, 4–32

N
Nameplate Location, P–3

O
Option
Control Interface, 1–3
Identification, P–5
Options, P–7
Index

P
Parameter, Definition, P–9
Part Replacement, 4–1
Part Replacement Procedures, 4–1
PC Board Mounting Frame, 2–6, 2–26
Illustration, 2–34
Installation, 2–35
Removal, 2–35
Power Module Snubber Board
Illustration, 2–39
Installation, 2–41
Removal, 2–40
Power Module Snubber Resistor
Illustration, 4–14
Installation, 4–16
Removal, 4–15
Power Modules
Illustration, 3–9, 4–11
Installation, 4–13
Removal, 4–12
Testing, 3–9
Precautions
Electrostatic Discharge, P–2
Safety, P–1
Precharge Board
Illustration, 2–23
Installation, 2–25
Removal, 2–23
Testing, 3–7
Press, Definition, P–9
Procedures
Bus Capacitor Bank Installation, 4–7
Bus Capacitor Bank Removal, 4–6
Bus Capacitor Replacement, 3–12
Bus Capacitor Testing, 3–12
Bus Fuse Installation, 4–29
Bus Fuse Removal, 4–28
Bus Fuse Replacement, 4–28
Capacitor Bank Assembly Installation, 2–38
Capacitor Bank Assembly Removal, 2–37
Closing Drive Enclosure, 2–8
Control Interface Board Installation, 2–10
Control Interface Board Removal, 2–9
DC Bus Inductor Installation, 4–25
DC Bus Inductor Removal, 4–24
DC Bus Inductor Replacement, 4–23
DC Voltage Check, 2–8
Drive Enclosure, Opening and Closing, 2–6
Fan Installation, 4–22
Fan Removal, 4–21
Gate Driver Board Installation, 2–22
Gate Driver Board Removal, 2–20
Gate Driver Board Testing, 3–3
Ground Sense CT Installation, 4–27
Ground Sense CT Replacement, 4–26
Input Rectifier Snubber Board Installation, 2–44
Input Rectifier Snubber Board Removal, 2–43
Inverter Housing Assembly, Access to, 2–27
Inverter Housing Assembly, Installation, 2–33
Inverter Housing Assembly, Removal, 2–28
LEM Installation, 4–31
LEM Removal, 4–30
LEM Replacement, 4–30
Main Control Board Installation, 2–13
Main Control Board Mounting Plate Installation, 2–19
Main Control Board Mounting Plate Removal, 2–18
Main Control Board Removal, 2–11
Major Component Replacement, 4–3
MOV Surge Suppressor Installation, 4–34
MOV Surge Suppressor Removal, 4–32
MOV Surge Suppressor Replacement, 4–32
Opening Drive Enclosure, 2–7
PC Board Mounting Frame Installation, 2–35
PC Board Mounting Frame Removal, 2–34
Power Module Installation, 4–13
Power Module Removal, 4–12
Power Module Replacement, 3–9
Power Module Snubber Board Installation, 2–41
Power Module Snubber Board Removal, 2–40
Power Module Snubber Resistor Installation, 4–16
Power Module Snubber Resistor Removal, 4–15
Power Module Testing, 3–9
Precharge Board Installation, 2–25
Precharge Board Removal, 2–23
Precharge Board Testing, 3–7
SCR Installation, 4–19
SCR Removal, 4–17
SCR Replacement, 3–15
SCR Testing, 3–15
Spine, Disconnecting, 2–30
Spine, Installation, 2–33
Spine, Removing, 2–31
Thermistor Installation, 4–10
Thermistor Removal, 4–9
Product Identification, P–3
Programming
 Input Mode, 1–4
 Local, 1–4

R
Related Publications, P–10
Replacement Parts
 List, 5–1
 Ordering, 5–1

S
Safety Precautions, P–1
Schematics, 6–1
SCRs
 Heat Sinks, 4–18
 Illustration, 4–16
 Installation, 4–19
 Location, 4–16
 Removal, 4–17
 Replacement, 4–16
 Roll Pins, 4–19
 Spring Bars, 4–19
 Testing, 9–15
Service Platform, 2–32
Software Compatibility, P–4
Speed Select, Input State, 1–8
Spine
Disconnecting, 2–30
Installation, 2–33
Removing, 2–31

T
TB3 Terminal Designations, 1–5
Terminal Block Locations, 1–2
Terminal Designations, TB3, 1–5
Thermal Switch, 4–18
Thermistor
 Illustration, 4–8
 Installation, 4–10
 Removal, 4–9
 Replacement, 4–8
Torque Sequence, 2–3
 Four-Point Mounting, 2–4
 Six-Point Mounting, 2–4
 Two-Point Mounting, 2–3
Torque Specifications, 2–4
Transformer Assembly. See Fan and Transformer Assembly
True, Definition, P–10

W
Wire Sizes, 1–5

Z
Zener Diode Testing, 3–5
We Want Our Manuals to be the Best!

You can help! Our manuals must meet the needs of you, the user. This is your opportunity to make sure they do just that. By filling out this form you can help us provide the most useful, thorough, and accurate manuals available. Please take a few minutes to tell us what you think. Then mail or FAX this form.

FAX: to your local Allen-Bradley Sales Office or 414/512-8579

PUBLICATION NAME

PUBLICATION NUMBER, DATE AND PART NUMBER (IF PRESENT)

☑ CHECK THE FUNCTION THAT MOST CLEARLY DESCRIBES YOUR JOB.

☐ SUGGEST / RESPONSIBLE FOR THE PURCHASE OF EQUIPMENT ☐ MAINTAIN / OPERATE PROGRAMMABLE MACHINERY

☐ DESIGN / IMPLEMENT ELECTRICAL SYSTEMS ☐ TRAIN/EDUCATE MACHINE USERS

☐ SUPERVISE FLOOR OPERATIONS

☑ WHAT LEVEL OF EXPERIENCE DO YOU HAVE WITH EACH OF THE FOLLOWING PRODUCTS?

<table>
<thead>
<tr>
<th>PRODUCT</th>
<th>NONE</th>
<th>LITTLE</th>
<th>MODERATE</th>
<th>EXTENSIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROGRAMMABLE CONTROL</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>AC / DC DRIVES</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>PERSONAL COMPUTERS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>NC / CNC CONTROLS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>DATA COMMUNICATIONS / LAN</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

☑ RATE THE OVERALL QUALITY OF THIS MANUAL BY CIRCLING YOUR RESPONSE BELOW. (1) = POOR (5) = EXCELLENT

<table>
<thead>
<tr>
<th>QUALITY</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>HELPFULNESS OF INDEX / TABLE OF CONTENTS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>CLARITY</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>EASE OF USE</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>ACCURACY AND COMPLETENESS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QUALITY COMPARED TO OTHER COMPANIES’ MANUALS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>QUALITY COMPARED TO OTHER ALLEN-BRADLEY MANUALS</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

☑ WHAT DID YOU LIKE MOST ABOUT THIS MANUAL?

☑ WHAT DID YOU LIKE LEAST ABOUT THIS MANUAL?

☑ PLEASE LIST ANY ERRORS YOU FOUND IN THIS MANUAL (REFERENCE PAGE, TABLE, OR FIGURE NUMBERS).

☑ DO YOU HAVE ANY ADDITIONAL COMMENTS?

☑ COMPLETE THE FOLLOWING.

NAME ___________________________ COMPANY ___________________________

TITLE ___________________________ DEPARTMENT ___________________________

STREET ___________________________ CITY ___________________________ STATE ______ ZIP ______

TELEPHONE ___________________________ FAX AND/OR E-MAIL ___________________________
Allen-Bradley, a Rockwell Automation Business, has been helping its customers improve productivity and quality for more than 90 years. We design, manufacture and support a broad range of automation products worldwide. They include logic processors, power and motion control devices, operator interfaces, sensors and a variety of software. Rockwell is one of the world's leading technology companies.

Worldwide representation.

Argentina • Australia • Austria • Bahrain • Belgium • Brazil • Bulgaria • Canada • Chile • China, PRC • Colombia • Costa Rica • Croatia • Cyprus • Czech Republic • Denmark • Ecuador • Egypt • El Salvador • Finland • France • Germany • Greece • Guatemala • Honduras • Hong Kong • Hungary • Iceland • India • Indonesia • Ireland • Israel • Italy • Jamaica • Japan • Jordan • Korea • Kuwait • Lebanon • Malaysia • Mexico • Netherlands • New Zealand • Norway • Pakistan • Peru • Philippines • Poland • Portugal • Puerto Rico • Qatar • Romania • Russia-CIS • Saudi Arabia • Singapore • Slovakia • Slovenia • South Africa, Republic • Spain • Sweden • Switzerland • Taiwan • Thailand • Turkey • United Arab Emirates • United Kingdom • United States • Uruguay • Venezuela • Yugoslavia

Allen-Bradley Headquarters, 1201 South Second Street, Milwaukee, WI 53204 USA, Tel: (1) 414 382-2000 Fax: (1) 414 382-4444